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Introduction

Guilford and Zimmerman (1948) identified spa-
tial visualization as a process of imagining move-
ments, transformations, or other changes in vi-
sual objects. Spatial visualization, as one of the 
categories of spatial ability, McGee (1979) defined 
this term as the ability to mentally rotate, twist, 
or invert pictorially presented visual stimuli. The 
development of students’ visualization skills has 
been a priority for engineering graphics educa-
tors for many years. Three-dimensional modeling 
programs require students to be able to manipu-
late objects and workplanes in 3D space (Wiebe, 
Branoff, & Hartman, 2001). Mental rotation is the 
ability to rotate two or three-dimensional objects 
rapidly and accurately in the mind (Linn & Peters-
en, 1985). 

The Purdue Spatial Visualization Tests: Visualiza-
tion of Rotations (PSVT: R) is a cognitive mea-
sure of an individual’s spatial ability, specifically, 
spatial visualization ability of three-dimensional 
(3-D) mental rotation (Guay, 1980). The PSVT: R 
(Gay, 1976) has been frequently used in the fields 
of science, technology, engineering, and mathe-
matics (STEM); especially, in engineering educa-
tion for more than three decades (Sorby 2001a, 
2001b). Guay cautioned that if spatial tests are 
susceptible to being solved by more than one 
strategy and do not require mental manipulation 
of visual images, the spatial tests might not accu-
rately assess genuine spatial ability. Under these 
circumstances, Guay introduced the PSVT: R as 
an appropriate measure of an individual’s men-
tal rotation ability, as it required the use of the 
holistic strategy to solve spatial problems, rather 
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than the analytic strategy. Guay (1976) originally 
developed the Purdue Spatial Visualization Test 
(PSVT1), consisting of three different subtests 
entitled “Developments,” “Rotations,” and “Views,” 
which contains a total of 36 items, 12 from each 
subtest. Each subtest of the PSVT also had an in-
dependent extended version of 30 items entitled 
the Purdue Spatial Visualization Tests: Visualiza-
tion of Developments (PSVT: D), Visualization of 
Rotations (PSVT: R), and Visualization of Views 
(PSVT: V). Yue (2006, 2007, 2008) identified 10 fig-
ural errors on 7 of 30 items of the PSVT: R during 
a process to convert the paper-and-pencil based 
PSVT: R to a computer-based test for an experi-
mental study. The revised version was generated 
by correcting errors and checking all items in the 
test with permission of Guay.

The PSVT: R has been one of the most popular 
tests in engineering education to measure stu-
dents’ spatial visualization ability of mental rota-
tion (Contero, Naya, Company, Saorin, & Conesa, 
2005; Field, 2007) because the PSVT: R is unique in 
that 3-D objects in the test have inclined, oblique, 
and curved surfaces, which are more demanding 
to visualize than simple surfaces consisting of 
cubes as used in other tests.

Instrument

The PSVT: R is a 20-minute test for individuals 
aged 13 or older used to measure spatial visual-
ization ability in 3-D mental rotation (Guay, 1980). 
The PSVT: R has 2 practice items followed by 30 
test items which consist of 13 symmetrical and 
17 asymmetrical figures of 3-D objects, which are 
drawn in a 2-D isometric format. All the figures 
contain shapes of cubes or cylinders with varied 
truncated slots. The items are ordered to be pro-
gressively more difficult, based on the rotated an-
gles and axes (Guay, 1980). In each item, respon-
dents are shown a figure and its rotated figure for 
an example of rotation and asked to find another 
figure’s match as rotated in the same way of the 
example. The five given choices are rotated in dif-
ferent directions and shown at different angles.

The PSVT: R can be used for a variety of purpos-
es: to determine the relationship between spatial 
ability and academic performance in different 
fields, such as anatomy, mathematics, science, 
technology, and engineering (Black, 2005); to as-
sess gender differences (e.g., Sorby, 2001a, 2001b); 
to identify the effects of intervention courses to 
increase students’ spatial ability and academic 
performance (e.g., Sorby, 2000; Hamlin, Veurink, & 
Sorby, 2008). Sorby’s (2001a) six-year, longitudinal 
study found that the PSVT: R had been successful-
ly used to identify students who need a remedial 
training course to enhance their spatial ability. In 
the three decades since its development, its vital 
role as an assessment tool in educational settings 
is evident and use of the PSVT: R in STEM educa-
tion seems to be consistent.

 Research Background 

This study employed confirmatory factor analy-
sis to examine the unidimensionality of the PSVT: 
R through the examination of a hypothesized 
30 item one-factor model with data from engi-
neering design graphic students. To date, only 
two studies have examined data from engineer-
ing design graphic students for the PSVT: R. One 
was an exploratory factor analysis (EFA; Ernst, 
Williams, Clark, & Kelly, 2016). The second was a 
confirmatory factor analysis (CFA; Williams, Ernst, 
Clark, & Kelly, 2018). In the EFA the researchers 
found that data from engineering design graph-
ics students was not favorable to a one-factor 
solution and that the data supported a wide vari-
ety of solutions from one to three factors. Based 
on item analysis, the researcher’s proposed that 
the multiple factors generated with data for this 
group could be due to item difficulty factors. This 
suggested that not all of the items were needed 
for the one-factor construct that the PSVT: R as-
serted to measure with data from engineering 
design graphics students.

In Williams, Ernst, Clark, & Kelly (2018),  a CFA 
employing AMOS 7.0 was used to examine a  hy-
pothesized one-factor model where the 30 PSVT: 
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R items formed one factor. In this study, the data 
did not produce acceptable levels of model-fit 
consistently across the fit indices. These findings 
were in contrast to other studies (Maeda & Yoon, 
2011; Maeda Yoon, Kim-Kang, & Imbrie, 2013) 
which supported a one-factor model across all fit 
indices with the exception of the chi-square sta-
tistic (see Table 1). 

Because of the discrepancy in model-fit, the re-
searchers used modification indices provided by 
AMOS 7 to respecify the model in an attempt to 
fit the data to the hypothesized model. The mod-
ification indices indicated that 23 of the 30 error 
terms needed to be correlated for a one-factor 
solution. Once the 23 items were correlated, the 
data for the respecified model produced mea-
sures of model-fit that were acceptable across all 
fit indices with the exception of the chi-square 
statistic. All pathways in the model were statis-

tically significant at the p < .05 level. While the 
result was similar to Maeda and Yoon (2011) and 
Maeda et al. (2013), the analysis violated the a pri-
ori model specification assumption for SEM and 
it lacked theoretical justification for correlating 
the 23 error terms (Hermida, 2015). 

The maximum likelihood method employed by 
AMOS 7 assumes multivariate normality among 
the observed variables and preliminary univari-
ate diagnostics showed strong deviations from 
normality for many of the variables. As data for 
many of the items were highly skewed, the re-
searchers respecified a one-factor model that 
eliminated items with high skew values. This re-
sulted in a 10 item one-factor model that yielded 
acceptable model-fit across all indices including 
the chi-square statistic. All pathways in the mod-
el were statistically significant at the p < .05 level 
(see Table 1). Therefore, this the purpose of this 

Factor Model df 2 p RMSEA SRMR CFI TLI
Models in Literature
Maeda & Yoon (2011). 
One Factor 30 Items 405 670.01 < .001 .033 ** .924 .918

Maeda, Yoon, Kim-Kang, & Imbrie(2013). 
One Factor 30 Items 405 1623.06 < .001 .035 ** .928 .923

Williams, Ernst, Clark, & Kelly (2018). 
One Factor 30 Items 405 866.42 .000 .058 

(.053-.064) .065 .656 .630

Williams, Ernst, Clark, & Kelly (2018). 
One Factor 10 Items 35 44.50 .130 .029 

(.000-.051) .039 .963 .971

Models Examined

One Factor 30 Items Mplus 8.2 405 613.39 .000 .031 
(.026-.036) .111 .897 .889

One Factor 30 Items Stata 15 405 925.35 .000 .049 
(.044-.053) .053 .735 .716

One Factor 8 Items Mplus 8.2 20 52.67 .000 .055 
(.037-.073) .142 .911 .880

One Factor 10 Items Stata 15 35 159.26 .000 .080 
(.068-.094) .046 .913 .900

Note.  

Table 1 
Model-fit indices for one-factor PSVT-R models.
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research is reanalyzed data from a larger sample 
engineering design graphic students using Mplus 
8.2 which is designed for categorical data and 
through Stata 15 employing a tetrachoric correla-
tion matrix which is suitable for categorical data. 

Methods

Participants
The participants were 541 engineering design 
graphics students enrolled in introductory en-
gineering design graphics classes who were ad-
ministered the PSVT: R. The participants were pre-
dominately male (80.21%) and White (76.9%). The 
majority of the participants (88.9%) were between 
18-21 years old. The mean grade point average for 
the group was 3.34 (SD = .48). 

Procedures
A CFA was employed to test a hypothesized 
one-factor model with data for the 30 PSVT: R test 
items with Mplus 8.2 and Stata 15. A CFA with the 
robust weighted least squares estimators with del-
ta parameterization was conducted using Mplus 
8.2 (Muthén & Muthén, 1998-2017). A CFA was also 
conducted with Stata 15 employing the tetrachoric 
correlation matrix. Goodness-of-fit of the proposed 
models was examined with model-fit indices that 
are prevalent in the literature and supported by 
Mplus 8.2 and Stata 15. The likelihood-ratio chi-
square statistic ( χ2 ), the root mean square error of 
approximation (RMSEA; Browne & Cudeck, 1993), 
the standardized root mean square residual (SRMR), 
the Tucker Lewis index (TLI: Tucker & Lewis, 1973) 
and the comparative fit index (CFI; Bentler, 1990) 
were examined. 

Nonsignificant chi-square probability values larger 
than the .05 level are generally deemed as accept-
able. Values of less than .05 for the RMSEA are gen-
erally accepted while values as high as .08 can be 
considered reasonable (Browne & Cudeck, 1993; 
Kline, 2011). Accepted values for the SRMR range 
from .05 or less (Byrne, 2010) to .08 or less (Hu & 
Bentler, 1999). Accepted values for the TLI and CFI 
vary from .90 or higher (Bentler & Bonett, 1980) to 

.95 or higher (Byrne, 2010; Hu & Bentler, 1999; Kline, 
2011) to .97 or greater (Schermelleh-Engel, Moos-
brugger, & Muller, 2003). For the purposes of this 
study, any value above .90 for the CFI was deemed 
acceptable.

Results 

On the initial data submission in Mplus 8.2, the 
30 item one-factor model produced model-fit 
for the RMSEA that was acceptable although the 
other fit indices were outside of the range of ac-
ceptable model-fit (see Table 1). However, there 
were two warning statements on the printout 
which stated, “WARNING:  THE BIVARIATE TABLE 
OF V9 AND V1 HAS AN EMPTY CELL” and “WARN-
ING:  THE BIVARIATE TABLE OF V9 AND V5 HAS AN 
EMPTY CELL”.  According to Muthén and Muthén 
(1998-2017), when a bivariate table has an emp-
ty cell, this implies a correlation of one between 
the two variables. This means that the two items 
are not statistically distinguishable and both 
items should not be used in the analysis. In this 
case, data for the test item was removed from the 
model and the analysis was run again. This itera-
tive process was completed until no further error 
warnings were received. This resulted in an eight 
item one-factor model. 

In Stata 15, the 30 item one-factor model did 
not produce acceptable model-fit across the fit 
indices. The SRMR and RMSEA values fell with-
in the acceptable range, while the TLI and CFI 
values were not acceptable. These finding were 
in contrast to other studies which supported a 
one-factor model across all fit indices with the 
exception of the chi-square statistic (Maeda & 
Yoon, 2011; Maeda Yoon, Kim-Kang, & Imbrie, 
2013). The 10 item one-factor model based on 
Williams, Ernst, Clark, & Kelly (2018) was speci-
fied and reanalyzed. In the 10 item model, the 
SRMR, CFI, and TLI were acceptable and the 
RSMEA was acceptable, although borderline. 
Table 1 illustrates the model-fit indices for the 
one-factor model, the respecified one-factor 
model after accounting for the Mplus 8.2 warn-
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ings, as well as, those from other CFA studies in 
the literature. 

Conclusions

The hypothesized 30 item one-factor model did 
not produce an acceptable level of model-fit 
across the fit indices with data from engineering 
design graphics students when employing Mplus 
8.2 and Stata 15. Modifications to the hypothe-
sized model, based on Mplus 8.2 error warnings, 
produced a model that met most of the fit crite-
rion with the exception of the chi-square statistic 
and TLI. Only eight of the 30 items were included 
in this model. The eight items that formed one 
factor with Mplus 8.2 were items 13, 20, 23, 24, 
25, 26, 27, and 28. For Stata 15, the 10 items from 
Williams, Ernst, Clark, & Kelly (2018) produced ac-
ceptable levels of fit across all fit indices with the 
exception of the chi-square statistic. The 10 items 
that formed one factor with Stata 15 were items 
13, 22, 23, 24, 25, 26, 27, 28, 29, and 30. (see Table 
2). 

A confounding issue was the non-normal dis-
tribution of many of the item scores with data 
from engineering design graphics students. Ta-
ble 2 shows these items and the percentage of 
students answering the items correctly. Over half 
the test items were correctly identified by 80 per-
cent or more of the 541 participants. 

These findings suggested that a PSVT: R with 
fewer items can achieve an acceptable one-fac-
tor structure with data from engineering design 
graphics students and that many of the items 
might be redundant with this group. As this sam-
ple was engineer design graphics students, one 
would expect that they would have a certain 
familiarity to the material and would find many 
of the items easy. The data on the percentage of 
correct responses in Table 2 appeared to support 
this. This may also be true with other types of col-
lege majors that rely on visual spatial relations. 
However, we do not have the data to support 
this assertion. Likewise, other college majors may 

Item 
Number

Percentage 
correct Mplus 8.2 Stata 15 

1 95

2 95

3 92

4 96

5 94

6 90

7 95

8 89

9 96

10 90

11 90

12 82

13 77  Appropriate Appropriate

14 91

15 84

16 87

17 84

18 89

19 81

20 79 Appropriate

21 87

22 73 Appropriate

23 80 Appropriate Appropriate

24 80 Appropriate Appropriate

25 78 Appropriate Appropriate

26 74 Appropriate Appropriate

27 73 Appropriate Appropriate

28 76 Appropriate Appropriate

29 63 Appropriate

30 38 Appropriate

Table 2 
Item level statistics for percentage correct for engineering 
design graphics students and appropriate for Mplus 8.2 and 
Stata 15 one-factor models.
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find the items more difficult. With engineering 
design graphs students and research employing 
them, a shorter version of the PSVT: R could be as 
efficacious as the full-length version; saving time 
and effort in administration.
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