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Abstract

Spatial ability, particularly the cognitive capacity for mental rotations, is a critical component of human
cognition. Proficiency with mental rotation tasks is linked with educational performance in various Sci-
ence, Technology, Engineering, and Mathematics (STEM) disciplines, and with more general tasks such
as real world wayfinding. Spatial working memory (SWM) is posited as a fundamental psychological con-
struct associated with mental rotation ability. Through the adoption of pupillometry, this study aspired to
investigate the potential role of SWM within mental rotation performance. The results of this study unex-
pectedly illustrated that mental effort decreased as item difficulty increased. It is posited that learning may
have occurred during the initial easier tasks facilitating an increased efficiency in cognitive processing
associated with SWM storage during the more difficult mental rotations tasks.

Introduction

Spatial ability is well established as a core cognitive faculty for humans (Johnson &
Bouchard Jr., 2005). Proficiency in this domain has been shown to result in an increased
likelihood for success in various disciplines associated with Science, Technology, Engi-
neering, and Mathematics (STEM) (Lubinski, 2010; Wai, Lubinski, & Benbow, 2009). It is
also associated with the more general task of real world wayfinding (Hegarty, Montello,
Richardson, Ishikawa, & Lovelace, 2006). However, spatial ability as a construct is mul-
tidimensional, consisting of a variety of cognitive factors (Carroll, 1993). The capacity

to mentally rotate abstract stimuli is a specific ability within this faculty which is widely
recognised for its particular importance in human cognition (Maeda & Yoon, 2012).

Investigations into spatial ability and particularly mental rotations have revealed a gen-
der difference favouring males (Linn & Petersen, 1985; Lippa, Collaer, & Peters, 2010).
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In attempts to understand the rationale for this difference, numerous explanatory factors
have been proposed including genetics, hormones, brain structure and functions, previ-
ous experience with toys, games, activities and training, gender role identity, and confi-
dence in spatial abilities (Doyle, Voyer, & Lesmana, 2016). By virtue of their postulation
as explanatory factors for the gender difference, these factors are therefore considered
as general factors involved in the cognitive action of mental rotations or in its develop-
ment. Working memory capacity has also been identified as a factor inherent to mental
rotations and has been shown to account for the common variance between genders
(Kaufman, 2007). When considering the findings of Heil and Jansen-Osmann (2008),
which illustrated males as preferring a holistic strategy and women preferring a more
analytical piecemeal approach, the role of spatial working memory (SWM) in mental rota-
tions becomes increasingly interesting as the concept of mentally storing the image of an
abstract stimulus through the various stages of the rotation is posited as a core process
within this ability.

Cognitive load and spatial working memory in mental rotations

Items within mental rotation tests commonly involve the presentation of a target rotation
which includes an abstract stimulus presented in an initial state and in a goal state. A
second item stimulus is then presented in an initial state. The objective is to apply the
rotation(s) presented through the target stimulus to the item stimulus and select the
correct goal state from a selection of potential solutions (e.g. Guay, 1977). It is posited
within this study that SWM is a critical psychological mechanism inherent within this pro-
cess. SWM can be defined as “the system of psychological processes and representa-
tions that underlie our ability to remember the locations of objects in the world, for short
periods of time” (Dent & Smyth, 2006, p.529). This short period of time refers to a period
of seconds, differentiating it from the iconic memory which has a span of approximately
half a second (Delvenne & Bruyer, 2004). SWM is also recognised as having a capacity
and temporal limitation which restricts the amount of visual and/or spatial information
which can be contained within it and for how long it can be retained without rehearsal
(Cowan, 2001; Miller, 1956; Peterson & Peterson, 1959). These findings ultimately led
to the conception of cognitive load theory which describes how mental effort can be
induced by tasks relative to working memory limitations (Sweller, 1988). In the context
of mental rotations, particularly where multiple rotations or steps are required, it is pos-
ited that the spatial information pertaining to the stimulus position will need to be stored
briefly prior to subsequent rotations. In addition to this, further storage is posited to be
required for remembering the target sequence of rotations, and for the comparison be-
tween the target stimulus’ state with the potential solution stimulus after various steps.

Hypothesis

Just and Carpenter have shown that in the mental rotation of 2-dimensional stimuli,
pupil dilation, an indicator of mental effort, increased monotonically relative to an in-

21



Engineering Design Graphics Journal (EDGJ) Copyright 2018
Fall 2018, Vol. 82, No. 3 ISSN: 1949-9167
http://www.edgj.org

crease in angular disparity (Just & Carpenter, 1995; Just, Carpenter, & Miyake, 2003).
This work also showed that pupil size changes were more substantial for low visual-
izers. From this they posited that the demand on spatial resources was more for low
visualizers than for high visualizers. Considering this postulated role of SWM in mental
rotations, it is hypothesised that participants with lower levels of spatial ability will need
to exert a greater amount of mental effort during a 3-dimensional mental rotations task
than people with higher levels of spatial ability. It is also hypothesised that the mag-
nitude of this variance will increase as item difficulty increases where item difficulty is
classified by number of rotations and number of axes of rotation. The work conducted
by Sorby (2009) has established that mental rotation ability can be developed, however
the psychological mechanisms underpinning this development are relatively unknown.

Method

Approach

There are multiple approaches to measuring mental effort or cognitive load including
self-report measures, dual task analyses, behavioural measures, neurological mea-
sures, and physiological measures (Briinken, Plass & Leutner, 2003). Kahneman (2011)
considers pupil dilation as probably the best index of cognitive load as it reflects the
current rate of mental effort expenditure. Strengths of pupillometry include its non-inva-
sive nature and that it provides a continuous estimate of the intensity of mental activity
(Laeng, Sirois, & Gredeback, 2012). All cognitive effort causes pupil dilation (Kahneman
& Beatty, 1966) with this dilation reflecting an overall working memory capacity utilisa-
tion (Just et al., 2003). This infers that pupil dilation can be used to indicate overall cog-
nitive functioning in a particular task (Van Der Meer et al., 2010). This inference is sup-
ported by research showing increased pupil dilation relative to increased task difficulty
(Nuthmann & van der Meer, 2005; Raisig, Welke, Hagendorf, & van der Meer, 2007).
However, the allocation of cognitive resources is not solely dependent on task difficulty
but also on the level of engagement (Ahern & Beatty, 1979; Van Der Meer et al., 2010).
Therefore, it is important that pupillometric methodologies are designed and subsequent
data is interpreted with this consideration. As this study purported to examine SWM

in mental rotations, based on this research, pupillometry was adopted as the principle
method of investigation.

Participants

This specific study using pupillometry was part of a larger study examining the effects of
cognitive strategies on spatial ability performance. The cohort consisted of 2" Year un-
dergraduate Initial Technology Teacher Education (ITTE) students (N = 85) of which 80
were male and five were female, however not all participants engaged with this particu-
lar part of the study. The low representation of females in the cohort is reflective of the
gender distribution in technology education in Ireland where the study was conducted.
Initially, the Paper Folding Test (PFT) (Ekstrom, French, Harman, & Derman, 1976) was
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administered to the full cohort (N = 85) as it is a valid measure of a general visualization
(Vz) factor often used as a representative measure of spatial ability (Carroll, 1993). The
results of this test were used to stratify the cohort into quartiles (Q1 <9, Q2 10 - 11, Q3
12 - 14, Q4 15 - 20). The cohort for this part of the study (n = 16) which involved the use
of pupillometry comprised of four participants from each quartile to ensure a range of
spatial ability levels was represented. Considering the low number of females in the full
cohort, it was not possible to include adequate representation of females in this part of
the study. Additionally, in order to control for potential variances based on biological fac-
tors, participants age, sex and handedness were controlled for (Piper et al., 2011). The
study cohort who engaged with the pupillometry aspect (n = 16) consisted of all male
undergraduate students, had a mean age of 20.19 with a standard deviation of 0.75
(min age = 19, max age = 21), and were all right handed.

Method

Psychometric Tests

In addition to the PFT, the Shape Memory Test (SMT) (Ekstrom et al., 1976) as a mea-
sure of SWM and the Ravens Advanced Progressive Matrices Test (RAPM) (Raven,
Raven, & Court, 1998) as a measure of fluid intelligence were also administered. These
tests were selected as additional variables to investigate their potential role in mental
rotations tasks.

Stimuli for Pupillometry Tasks

The stimuli for this study included the 30 items from the Purdue Spatial Visualisation
Test: Visualisation of Rotations (PSVT.R) (Guay, 1977) and 30 experimental items
based on those within the PSVT:R. The PSVT:R was selected as it is a psychometrically
sound measure of mental rotations (Maeda, Yoon, Kim-Kang, & Imbrie, 2013) whereby
the items systematically increase in difficulty as more rotations are added and the ge-
ometry becomes more complex (Branoff, 2000). All items in the PSVT:R contain abstract
stimuli. Initial items require a mental rotation of 90° about one axis and progress to more
difficult items requiring a rotation of 90° about one axis followed by another rotation of
180° about a second axis. Thirty experimental items were also included which were
designed based on the items included in the PSVT:R. The experimental items contained
common real life objects in place of the abstract stimuli found in the standard PSVT:R.
The familiar nature of the stimuli was the only variance in the experimental items as all
rotations were designed to correspond those within the standard test.

Implementation

All testing was conducted individually with participants. Initially the psychometric tests
described above were administered in paper and pencil format. The order of administra-
tion was varied for each participant to avoid inducing an order bias. After all paper and
pencil tests were administered, participants engaged with the mental rotations test items
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electronically. Test items were displayed on a monitor and pupil dilation was recoded
using the Tobii X120 system. The Tobii X120 system tracks both eyes, has a sampling
rate of 120 Hz and a spatial resolution of 0.2°. Participants were seated with their heads
resting on a chinrest 65 cm in front of the monitor. Participants were evenly distributed
between one of two test conditions (Figure 1) with two participants from each quartile
being assigned to each. Following an explanation of the test instructions participants
completed two sample items from each type of stimulus to ensure that the data from
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Figure 1. lllustration of test condition one (left) and condition two (right). ltems in
this figure are sample items not included in the actual tests.

initial items wasn’t skewed by the novelty of the experience. Both tests were then pre-
ceded by a 10000 ms fixation period. For test condition one, even numbered items from
the standard PSVT:R were mixed with the odd numbered items from the experimental
pictorial version. For test condition two, odd numbered items from the standard PSVT:R
were mixed with even numbered items from the experimental pictorial version. There
was no time limit placed on participants when answering any test item. A 4000 ms fixa-
tion period was placed between each item. All participants answered 30 items, 15 from
the standard version of the PSVT.R and 15 from the experimental version.

Results

A Spearman’s correlation analysis was conducted to identify any relationships between
performance in the psychometric tests and mental effort exerted in the mental rotations
items as measured by the participants’ pupil dilation (Table 1). No statistically significant
correlations were observed between pupil dilation indices and performance in the psy-
chometric tests. Statistically significant moderate correlations were observed between
the performance in the mental rotation items and both the PFT (p = .574, p < .05) and
RAPM (p = .547, p < .05). Furthermore, a statistically significant strong correlation was
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Table 1
Correlation matrix indicating Spearman’s rho (p) correlations (n = 16)

PSVTR Pictorial PSVT:R  Mental Rotation PFT SMT

Dilation Dilation Performance
Pictorial PSVT:R Dilation .956**
Mental Rotation Performance -.003 -.006
PFT .043 -.007 574>
SMT -.095 -.133 .382 435
RAPM 135 .072 547" AT71 T74**

Note. PFT = Paper Folding Test. SMT = Shape Memory Test. RAMP = Ravens Advanced Progressive Matrices. ** Correlation is
significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

observed between the RAPM and the SMT (p =.774, p <.01) and a statistically signif-
icant very strong correlation was found between participants average pupil dilation in
standard and pictorial mental rotation items (p = .956, p < .01). Due to the low sample
size and resulting low statistical power, these correlations should be considered with
caution.

Further analysis of the pupillometry data was conducted to examine mental effort over
time as the item difficulty increased. For this part of the analysis, due to the different
items administered to participants, four separate datasets were created. These includ-
ed the standard PSVT:R items from test condition one, the experimental PSVT:R items
from test condition one, the standard PSVT:R items from test condition two, and the ex-
perimental PSVT:R items from test condition two. Each dataset contains the results from
eight participants. The results of this analysis are presented in Figure 2.
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Figure 2. Average pupil dilation for items in each test condition. Vertical axes indicate
pupil dilation in millimetres (mm) and horizontal axes indicate test item numbers.
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Figure 2. Average pupil dilation for items in each test condition. Vertical axes indicate
pupil dilation in millimetres (mm) and horizontal axes indicate test item numbers.

The results of Figure 2 illustrate negative trends in each circumstance indicating that
in general, as item difficulty increased, exerted mental effort decreased. As the difficul-
ty level increased with each item, it was hypothesised that the required mental effort
would also increase. Therefore, a more detailed analysis was conducted for the results
from each participant. The results of this analysis are presented in Figure 3 (standard
PSVT:R items) and Figure 4 (experimental items) respectively.
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Figure 3. Pupil dilation results for each participant for the standard PSVT:R items.
Vertical axes indicate pupil dilation in millimetres (mm) and horizontal
axes indicate test item numbers.
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Condition one results
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Figure 4. Pupil dilation results for each participant for the experimental PSVT:R items.
Vertical axes indicate pupil dilation in millimetres (mm) and horizontal axes
indicate test item numbers.

As can be observed from Figure 3 and Figure 4, 28 out of the 32 results from individual
participants illustrate a negative trend in mental effort exerted over time despite item
difficulty increasing. In addition to this, when comparing the R? values for the trends
between individual students effort on the standard and experimental items, in 14 of the
16 cases the R? values are higher for the standard PSVT:.R items containing the abstract
stimuli.

Discussion

The results of this study were unexpected especially considering the work of Just and
Carpenter (Just & Carpenter, 1995; Just et al., 2003). The study aspired to investigate a
hypothesis predicated on the assumption that as item difficulty increased, mental effort
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associated with SWM would also increase relative to the demands of the task. However,
the results illustrate a negative trend indicating that despite an increase in item difficul-
ty, exerted mental effort tended to decrease over time. It is possible that the negative
trends exist as a result of increased boredom or disengagement over time during the
test. However, if this were the case it would also be expected that performance would
decrease as a result or that there would be a low level of reliability. The decreasing
trend is observable from the initial items however performance scores (M = 18.938,
SD = 5.323) suggest that sufficient effort was exerted to perform well until at least the
middle of the test and the reliability of the test was high (a = .795) indicating that par-
ticipants didn’t resort to guessing in order to finish the test quickly. The time taken by
participants to complete the test was short (M = 9.48 min, SD = 3.48 min) considering
the standard 20 min time limit. Therefore, while it is plausible for boredom, disengage-
ment, or reduced enthusiasm to have caused the negative trends, these variables did
not affect participants enough to impact substantially on performance. The relationship
between these and related emotions with test taking behaviour requires further investi-
gation to make more precise inferences on these results.

The results of this study do however align with the neural efficiency hypothesis which
suggests that intelligence is a function of how efficient the brain works and not how hard
it works (Haier, Siegel, Tang, Abel, & Buchsbaum, 1992). Evidence of neural efficiency
illustrates that a decrease in cognitive effort can be found subsequent to learning or
training. In this study, early items may have provided an opportunity for such learning to
occur reducing the mental effort associated with SWM storage as this process became
more efficient. However, the idea that such efficiency could develop so quickly through-
out the first number of test items is surprising and warrants further inquiry to determine if
this is the case.

In addition to further enquiry being warranted for the potential development of neural
efficiency in SWM and mental rotations, another question emerges from these results
associated with performance. If the mental effort required to engage in more difficult
questions is lower than previous and easier questions, suggesting more cognitive re-
sources are available to engage in the task, why is performance poorer in these ques-
tions? Woodman and Vecera (2011) illustrate that accessing object features in the visual
working memory degrades the representations of other stored objects. The increased
number of rotations in more difficult questions may require more continued access to
object features and therefore despite the rotation seemingly becoming more efficient,
the degrading of the target rotation may be the reason people get the harder items
incorrect. This would explain why the apparently reduced effort required doesn’t result in
increased performance.

With respect to the differences between the abstract and familiar stimuli, R? values were
typically higher for the standard items. This is likely due to it being a validated instru-

ment. It is interesting however that the results from the items with familiar stimuli show a
similar trend as these items were experimental and not statistically validated prior to this

28



Engineering Design Graphics Journal (EDGJ) Copyright 2018
Fall 2018, Vol. 82, No. 3 ISSN: 1949-9167
http://www.edgj.org

study. Unfortunately, mental effort could not be compared between the types of stimuli
due to luminance difference in the items. Further work is warranted where this variable
is controlled to examine if the familiarity of the stimuli affects the required mental effort.
In relation to potential differences, Mayer, Kim, and Park (2011) have shown that ab-
stract or novel stimuli are more easily encoded in the working memory and therefore the
hypothesis may be generated that less mental effort will be needed in mental rotation
tasks with abstract rather than familiar tasks. Alternatively, familiar objects may be able
to be retrieved from long-term memory storage rather than needing to be encoded into
the SWM which may facilitate an easier mental rotation.

Conclusion

Considering that mental rotation ability is a strong predictor of educational success in
STEM, it is paramount that a causal explanation for this phenomenon is determined to
facilitate the scientific development of associated pedagogical approaches and training
interventions. Determining more clearly the role of SWM in mental rotations would aid in
identifying its underlying cognitive processes and knowing these would aid establishing
why this ability is related to STEM performance. Additionally, as mental rotation ability
can be trained, it may be possible to enhance such interventions through the incorpora-
tion of working memory training and increase the effect size that can be obtained both
in terms of increasing spatial ability capacity and STEM performance. Finally, if it is the
case the either a strategy can be developed in the initial test items or that a degree of
efficiency can be achieved making more mental resources available in more difficult
items, this has implications for research aiming to adapt the PSVT:R and potentially
other related tests. Shortening these tests for pragmatic reasons may affect the strate-
gies used by test takers if sufficient time is not available at the beginning prior to more
difficult items affecting their psychometric properties.

Note

The preliminary results of this study were presented at the 72nd ASEE Engineering De-
sign Graphics Division Midyear Conference in Montego Bay, Jamaica.
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