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Abstract

The Purdue Spatial Visualization Test: Visualization of Rotations (PVST:R) is among the most commonly 
used measurement instruments to assess spatial ability among engineering students. Previous analy-
sis that explores the factor structure of the PSVT:R indicates a single-factor measure of the instrument. 
With this as a basis, this research seeks to examine the psychometric properties of the test. This paper 
presents the findings of single and multi-factor analyses of the PSVT:R given to 335 students enrolled in 
an introductory engineering design graphics course. Initial analysis did not support a single factor solu-
tion. Further examination of pattern analyses and communalties are suggestive of the possibility that the 
PSVT:R may load on multiple factors. The magnitude of the variance is not explained by a single factor 
and whether the PSVT:R can be considered a single construct measure of mental rotation ability is not 
supported by this study. This represents a potential divergence from the current literature and may call 
into question the replicability of the test’s psychometric properties.

Introduction

Calls for greater numbers of practitioners with skills in the fields of science, technolo-
gy, engineering, and mathematics (STEM) are only increasing as global and societal 
demands for innovation in technology, medicine, transportation, communications, and 
other markets continue to advance (Kuenzi, 2008). Spatial visualization skills represent 
a key component in a variety of STEM fields and of crucial importance in technical pro-
fessions such as engineering (Sorby, 1999; Torpey, 2013). STEM credentialed profes-
sionals tend to demonstrate notable levels of spatial ability as students with skills signifi-
cantly greater than those of their peers (Lubinski, 2010). 

Spatial ability assessments have been shown to have strong correlations with, and be 
a possible predictor of, success in engineering graphics courses (Maeda, Yoon, Kim-
Kang, & Imbrie, 2013; Sorby, 1999). Several measurement instruments frequently used 
in engineering education include the Mental Rotations Test (MRT), the Mental Cutting 
Test (MCT), the Revised Minnesota Paper Form Board Test (RMPFBT), the Differential 
Aptitude Tests: Spatial Relations (DAT:SR), and the Purdue Spatial Visualization Tests: 
Visualization of Rotations (PVST:R) (Maeda et al., 2013). 

Along with holding significance as a factor in STEM education, spatial ability has also 
been shown to have some levels of malleability with respect to instruction with some 
training having an overall effect size of 0.47 standard deviations (Uttal, Miller, & New-
combe, 2013). Sorby (2009) demonstrated that spatial skills, as measured with a stan-



Engineering Design Graphics Journal (EDGJ)  
Winter 2017, Vol. 81, No. 1  
http://www.edgj.org 

Copyright 2017
ISSN: 1949-9167

2

dard instrument, can be improved with training in an undergraduate engineering class 
environment. Current literature contends that increased spatial thinking or reasoning 
abilities provide potential predictive value for success in academic and career pursuits 
(Uttal et al., 2013) as well as being a demonstrable need as a focus in STEM learning 
environments. 

As there is a  growing shift from two-dimensional and three-dimensional modeling in en-
gineering graphics courses (Clark, Scales, & Petlick, 2005) along with greater inclusion 
of solid modeling  programs in high school curricula, the psychometric properties of the 
instruments used to assess and evaluate spatial visualization skills among students is of 
increasing importance. With the move to more STEM integration in secondary schools, 
it can be presumed that the need to more accurately assess the skills of students will 
grow with it. This study offers insight into the psychometric properties of the PSVT:R in 
order to determine what factors the instrument assesses so that modifications to engi-
neering graphics curricula and pedagogies can be properly assessed with respect to 
student spatial visualization skills.

Instrumentation

The PSVT:R is among the most popular and common tests within engineering education 
to measure students’ spatial visualization, specifically mental rotation, abilities (Field, 
2007). Initially developed by Guay (1976), the PSVT:R was an extended subsection of 
the Purdue Spatial Visualization Tests (PSVT). The original PVST included three sub-
tests of 12 items each titled Developments, Rotations, and Views. Each subtest also 
had 30-item extended independent versions: the Visualization of Views (PSVT:V), Visu-
alizations of Rotations (PVST:R) and Visualization of Developments (PSVT:D) (Maeda 
et al., 2013). 

Along with its popularity as an assessment tool in engineering education, the PSVT:R 
(along with the MCT) also appears to have high construct validity when measuring 
spatial visualization ability (Branoff, 1998). The PVST:R is also unique due to its use of 
inclined, oblique, and curved surfaces as they are more demanding to visualize than 
simple cubically-shaped objects (Yue, 2004).

Part of the impetus for the development of the PVST:R was that other tests may be 
vulnerable to analytic or non-spatial strategies for the solving of items (Yoon, 2011). 
Participants may be able to employ strategies other than mental manipulation of objects 
to solve items, thereby negating a test’s capacity to genuinely measure spatial abilities. 
The PSVT:R was revised by Yoon (2011) in part to address figural errors such as miss-
ing lines as well as changes to the format of the instrument to address possible mea-
surement errors and limit the possibility for participant distraction by limiting the number 
of items per page to one (Maeda et al., 2013). 
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Whether the original or Revised PVST:R, little empirical research exists into the psycho-
metric properties of the test. While Maeda et al. (2013) describes the Revised PSVT:R 
as “a psychometrically sound instrument” (p. 763) with respect to first-year engineering 
students, limited evidence to that claim involves the study described in that paper and 
the doctoral dissertation of Yoon (2011) in which the Revised PVST:R was developed. 
However, Yoon (2011) and Maeda and Yoon (2011, 2013) cite a lack of empirical study 
investigating the psychometric properties of the PVST:R. 

The apparent dichotomy that exists in the literature as to the psychometric trustworthi-
ness of the PSVT:R requires further investigation in order to examine what factors, if 
any, the instrument measures. As the PSVT:R, whether in its original or revised form, 
remains an accepted and common assessment of students spatial visualization skills 
The lack of empirical study and/or factor analysis is concerning to the authors.

While some studies focus on engineering students as a general population (Field, 2007; 
Maeda et al., 2013; Sorby, 2009; Sorby & Baartmans, 2000), few published studies fo-
cus specifically on engineering graphics courses (Branoff, 1998). Some recent research 
utilizing the PSVT:R in engineering graphics courses (Branoff, Brown, & Devine, 2015; 
Rodriguez &  Rodriguez, 2015) establish the contemporary use of the test. This extant 
research presents a timely justification for an examination into the psychometric proper-
ties of the PSVT:R.

Methods

Participants in this study were given the PSVT:R during the 11th week of an introductory 
engineering graphics course in a major university undergraduate program. Participants 
were largely declared STEM majors with 75% of the total sample group being engineer-
ing students. Freshmen were represented three to one when compared to other class 
levels. Males comprised 78.5% of the sample population (Table 1).

Table 1 
Demographic Information for Study Participants

Participant Major (percentages)

 Engineering Science & Math Technology  Education Other Declared Undeclared
 75 4.2 6.3 2.1 8.5 3.9

Participant Class Level (percentages)
 
 Freshman Sophomore Junior Senior Other 
 75 4.2 6.3 2.1 8.5 

Participant Gender (percentages)

 Male  Female
 78.5   20.9
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The course used in this research represents a diverse range of majors from throughout 
the university. The 11th week was selected because it is the point in the course where 
most of the content and practice work was completed and prior to the students starting 
their final projects. Over the course of two years, in both the fall and spring semesters, 
335 tests were completed. The PSVT:R figures were displayed on the individual partic-
ipant’s computer screens and the answers were recorded on paper by the participating 
students. Participants were able to move back and forth though the figures as needed. 
The collected answer sheets were then entered into a database for analysis. 

A critical methodological decision for researchers using factor analysis is determining 
the number of factors to retain. In this study, the number of factors to retain was exam-
ined through multiple methods as there is no singular exacting process (Gorsuch 2003). 
Because the PSVT was designed to measure one factor, an a priori one-factor solu-
tion was examined. The scree test (Cattell, 1966; Cattell & Jaspers, 1967) and parallel 
analyses (Lorenzo-Seva & Ferrando, 2006) were also employed to determine factor 
retention. Data were analyzed using Factor 9.3 (Lorenzo-Seva & Ferrando, 2006). Raw 
scores for the PSVT were submitted to unweighted least squares factor analysis with 
the oblique promax rotation. The promax rotation was selected because any factors re-
sulting from the analysis were hypothesized to be correlated. The polychoric correlation 
matrix Factor 9.3 generated for the analyses is shown in Table 2. Based on the number 
of participants, pattern coefficients of .30 or greater were considered to be salient (Gor-
such, 1983; Hair, Anderson, Tatham, & Black, 1998). 

Results

The results of the scree test (Figure 1) appeared to support a three-factor solution. A 
parallel analysis analyses by comparing the sample data and those for 1000 sets of ran-
domly generated data (Lorenzo-Seva & Ferrando, 2006; Timmerman & Lorenzo-Seva, 
2011), the percent of variance for the randomly generated data exceeded the variance 
for the sample data after the second factor when using the 95th percentile, suggesting a 
two-factor solution. Therefore, one-, two-, and three-factor solutions were examined. 

The Kaiser-Meyer-Olkin index of sampling adequacy was .81, indicating that the data 
represented a homogeneous collection of variables that were suitable for factor anal-
ysis. Bartlett’s test of Sphericity was significant for the sample [x2 (435, N = 335) = 
1862.50; p < .001], indicating that the set of correlations in the correlation matrix was 
significantly different from zero and suitable for factor analysis.
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 Note. Significant correlations (>.30) are in bold.

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

V 1 1.00

V 2 0.90 1.00

V 3 0.46 0.56 1.00

V 4 0.31 0.13 0.26 1.00

V 5 0.05 0.00 0.22 0.12 1.00

V 6 0.00 0.00 0.00 0.19 0.38 1.00

V 7 0.20 0.16 0.14 0.00 0.00 0.25 1.00

V 8 0.00 0.03 0.00 0.00 0.00 0.00 0.00 1.00

V 9 0.00 0.00 0.00 0.06 0.00 0.19 0.00 0.05 1.00

V 10 0.30 0.33 0.17 0.08 0.00 0.22 0.41 0.23 0.30 1.00

V 11 0.21 0.25 0.02 0.00 0.00 0.15 0.33 0.23 0.19 0.28 1.00

V 12 0.15 0.24 0.00 0.00 0.00 0.00 0.17 0.00 0.08 0.21 0.31 1.00

V 13 0.04 0.12 0.00 0.06 0.00 0.08 0.19 0.00 0.00 0.26 0.00 0.00 1.00

V 14 0.23 0.19 0.05 0.00 0.17 0.11 0.00 0.07 0.22 0.31 0.11 0.35 0.00 1.00

V 15 0.02 0.05 0.00 0.00 0.25 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 1.00

V 16 0.00 0.00 0.04 0.18 0.02 0.00 0.00 0.00 0.08 0.18 0.00 0.11 0.04 0.00 0.37 1.00

V 17 0.18 0.12 0.00 0.11 0.24 0.20 0.00 0.00 0.11 0.30 0.00 0.08 0.00 0.18 0.28 0.15 1.00

V 18 0.17 0.29 0.00 0.15 0.00 0.17 0.21 0.05 0.15 0.29 0.10 0.15 0.10 0.26 0.04 0.07 0.18 1.00

V 19 0.05 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.08 0.08 0.00 0.00 0.06 0.02 0.00 0.01 0.00 1.00

V 20 0.00 0.03 0.00 0.11 0.07 0.13 0.24 0.06 0.02 0.18 0.13 0.09 0.00 0.17 0.00 0.06 0.00 0.11 0.18 1.00

V 21 0.00 0.00 0.00 0.00 0.00 0.09 0.06 0.00 0.00 0.31 0.15 0.14 0.00 0.18 0.00 0.04 0.00 0.15 0.10 0.37 1.00

V 22 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.03 0.00 0.06 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.03 0.00 0.04 0.15 1.00

V 23 0.02 0.04 0.00 0.00 0.00 0.00 0.11 0.00 0.03 0.14 0.05 0.27 0.03 0.03 0.00 0.16 0.00 0.08 0.03 0.00 0.15 0.00 1.00

V 24 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.05 0.10 0.11 0.00 0.00 0.06 0.00 0.00 0.04 0.00 0.00 0.11 0.07 0.12 1.00

V 25 0.00 0.00 0.00 0.00 0.00 0.10 0.14 0.00 0.08 0.19 0.00 0.18 0.08 0.13 0.03 0.03 0.00 0.00 0.07 0.09 0.13 0.00 0.18 0.25 1.00

V 26 0.00 0.00 0.00 0.03 0.00 0.12 0.08 0.00 0.30 0.12 0.03 0.09 0.00 0.02 0.00 0.14 0.00 0.05 0.01 0.27 0.02 0.11 0.26 0.21 0.24 1.00

V 27 0.00 0.14 0.00 0.00 0.00 0.06 0.07 0.00 0.01 0.15 0.10 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.07 0.00 0.00 0.06 0.07 0.10 0.05 1.00

V 28 0.03 0.04 0.00 0.00 0.00 0.11 0.04 0.00 0.33 0.25 0.11 0.07 0.01 0.25 0.00 0.03 0.00 0.00 0.06 0.11 0.21 0.03 0.28 0.00 0.21 0.41 0.00 1.00

V 29 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.01 0.00 0.08 0.13 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.01 0.11 0.17 0.21 1.00

V 30 0.12 0.04 0.00 0.05 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.06 0.00 0.15 0.00 0.14 0.00 0.03 0.00 0.09 0.00 0.00 0.00 0.13 0.24 0.25 0.01 0.11 0.00 1.00

Table 2 
Correlation Matrix for Test Items
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Figure 1. Results of the scree test with eigenvalues

Table 3 shows the loadings for one-, two-, and three-factor solutions. In the one-factor 
solution, approximately 12 percent of the variance was explained and only 10 of the test 
items loaded on the factor. The reliability of the 10 item scores that loaded on one factor 
was .80.

The loadings for the two-factor rotated solution (shown in Table 3) reveal approximately 
20 percent of the variance was explained with the first factor accounting for 12 percent 
and the second factor accounting for eight percent. Eight items loaded on factor one 
and three items loaded on factor two. The interfactor correlation was .24.The reliability 
of the eight items for factor one was .76 and .94 for the three items on factor two.

Table 3 also shows the loadings for the three-factor rotated solution.  In the three-fac-
tor rotated solution, approximately 26 percent of the variance was explained with the 
first factor accounting for 12 percent and the second factor accounting for eight percent 
and the third factor accounting for six percent. Two items loaded on factor one and four 
items loaded on factor two, and 10 items loaded on factor three. The interfactor cor-
relation for factor one and factor two was .21; factor one and factor three was .25; and 
factor two and factor three was .32. The reliability of the two items for factor one was 
.99, the four items for factor two was .64, and .75 for the 10 items on factor three.



Engineering Design Graphics Journal (EDGJ)  
Winter 2017, Vol. 81, No. 1  
http://www.edgj.org 

Copyright 2017
ISSN: 1949-9167

7

Table 3 
Pattern Coefficients and Communalities (h2) for One-, Two-, and Three-Factor Solutions

 One-Factor h2 Two-Factor Rotated h2 Three-Factor Rotated h2

 1  1 2  1 2 3  
V1 0.54 0.292 -0.081 0.91 0.8 0.094 -0.008 -0.07 0.788
V2 0.578 0.334 -0.064 0.967 0.909 1.022 -0.118 -0.018 1
V3 0.308 0.095 -0.107 0.543 0.287 0.528 0.067 -0.132 0.275
V4 0.223 0.05 0.033 0.252 0.069 0.208 0.239 -0.066 0.109
V5 0.143 0.02 0.082 0.089 0.018 -0.012 0.567 -0.15 0.288
V6 0.288 0.083 0.318 0.021 0.105 -0.076 0.0484 0.14 0.282
V7 0.4 0.16 0.299 0.186 0.151 0.179 0.02 0.297 0.152
V8 0.119 0.014 0.105 0.035 0.014 0.033 0.008 0.102 0.014
V9 0.286 0.082 0.289 -0.043 0.145 -0.066 0.116 0.344 0.147
V10 0.706 0.499 0.563 0.293 0.482 0.26 0.161 0.5 0.477
V11 0.396 0.157 0.293 0.192 0.15 0.2 -0.043 0.317 0.162
V12 0.395 0.156 0.343 0.141 0.161 0.157 -0.084 0.387 0.186
V13 0.163 0.027 0.109 0.089 0.025 0.081 0.039 0.094 0.024
V14 0.425 0.181 0.355 0.165 0.182 0.137 0.144 0.299 0.184
V15 0.098 0.01 0.076 0.04 0.009 -0.037 0.423 -0.1 0.159
V16 0.172 0.029 0.196 0.008 0.039 -0.037 0.235 0.099 0.076
V17 0.262 0.069 0.151 0.167 0.063 0.081 0.512 -0.056 0.269
V18 0.384 0.148 0.249 0.22 0.137 0.189 0.169 0.181 0.147
V19 0.138 0.019 0.125 0.047 0.021 0.054 -0.03 0.138 0.023
V20 0.283 0.08 0.371 -0.03 0.133 -0.041 0.056 0.35 0.132
V21 0.281 0.079 0.384 -0.047 0.141 -0.047 0.001 0.387 0.143
V22 0.058 0.003 0.093 -0.024 0.008 -0.033 0.048 0.073 0.009
V23 0.226 0.051 0.334 -0.057 0.106 -0.039 -0.107 0.387 0.131
V24 0.127 0.016 0.209 -0.056 0.041 -0.042 -0.077 0.245 0.052
V25 0.248 0.062 0.395 -0.092 0.147 -0.079 -0.076 0.435 0.116
V26 0.264 0.069 0.488 -0.157 0.226 -0.148 -0.057 0.522 0.243
V27 0.15 0.022 0.141 0.042 0.025 0.054 -0.059 0.169 0.032
V28 0.317 0.101 0.511 -0.111 0.246 -0.102 -0.06 0.546 0.266
V29 0.077 0.006 0.131 -0.039 0.016 -0.037 -0.01 0.138 0.017
V30 0.153 0.024 0.19 0.001 0.036 0.009 -0.045 0.212 0.042

Note. Salient pattern coefficients are in bold type.

Conclusion

Prior analysis of the PSVT:R describes the test as loading on a single factor, which 
indicates a single construct measure of mental rotation ability (Maeda et al., 2013). This 
study, in part, was designed to test this premise in an introductory engineering graphics 
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course under a null hypothesis of the PSVT:R representing a single construct measure. 
In this study, analysis on a single factor did not explain the magnitude of variance antic-
ipated. This led to further examination using rotated factors for a two-factor solution as 
well as a three-factor solution.  The result of the three-factor analysis of the 335 first-
year graphics communications students, shows the PSVT:R loading on multiple factors. 
This suggests that mental rotation abilities of introductory engineering design graphics 
students, as measured by the PSVT:R, is inconsistent with the prior Maeda et al. (2013) 
study. It is acknowledged that the current study was conducted with dissimilar test 
populations from previous studies exploring factor composition. There is evidence that 
the PSVT:R was a significant predictor of student success in first year graphics cours-
es (Sorby & Baartmans, 2000). However, our analysis demonstrates multiple unknown 
measured factors. This analysis raises questions as to what the test measures con-
cerning specific constructs. More investigation is needed to determine what factors the 
PSVT:R consistently measure and its use as a single construct predictor. 
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