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Introduced less than 12 months ago, the Deci-LoN Slide Rule is already the
standard of slide-rule performance with the nation's engineers. There are
four good reasons why: greater capacity, greater consistency, greater logic,
greater speed. And that's greater everything of importance to slide-rule
function.

- With its unique grouping of 26 scales, including new scales based on natural
- logarithms, Deci-LoN has opened up a whole new world of slide-rule capa-
bility. With its consistent and extended use of colors, functional scale
symbols, and additional calibrations, Deci-Lon provides easier and faster
slide-rule manipulation than many ever thought possible.

For complete details on the “next logical step” in slide-rule evolution, write:
Educational Division, Keuffel & Esser Co., Hoboken, N. J, We'll send you an
eight-page, fact-filled brochure.

EDUCATIONAL DIVISION

KEUFFEL & ESSER CO.

Now available in 2 sizes.

The Deci-Lon Slide Rule is now of-
fered in a handy 5” pocket size as
well as the standard 10" size. The
standard Decr.Lon, with fine leath-
er sheath and hard-cover instruc-
tion manual, is $25. The new pock-
et size, with leather sheath, leath-
er-covered pocket clip, is $12.50.
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CEDITORIAL .

EDITORIAL Fall 1963

For some years there has been a trading of stories about re-
searchers and developers or the R and the D. The way the engineers
tell the story, if the rocket is successful, the R's get the praise
and IF the rocket is unsuccessful, the D's get the blame. Praise-
worthy or mot, the successful engineering of our space projects de-
pend on an effective use of graphics in design and communication of
workable ideas and inventions.

The economic value of graphical representation in the develop-
ment of modern research is estimated at about 10% of the dollars
spent. For efficient use of our engineering talents in the mammoth
projects of the space programs and in the revolution toward automa-
tion we should continue to vigorously promote an academic program
on an advanced level to teach engineering students graphic design
and analysis,

This Journal carries articles on graphics and computers, noms-
ography, graphics curriculum and research in theoretical graphics.
For the Journal to continue publishing a significant number of ar-
ticles we must widen our subscription roles and carry more advertis-
ing. A Publication Committee meeting was held at West Point, Nov-
ember 19 with Profs. Blade, Griswold, Hammond, Mochel, Rogers and
Wellman present. We discussed the financial problems of the Journal.
We unanimously agreed the Journal should continue to serve its wide-
spread leaders in education and industry and we pledged to devote
more effort in supporting the Journal, Each of you can help. Please
enlist more subseribers and advertisers.

Sincerely,
(. /- 2;

Mary B e

The Journal of Engineering Graphlcs
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PROYECCIONES ACOTADAS - INDEXED PROJECTION

By Baruch Bergthal

’ (Translation by Irwin Wladaver)

[Translator's foreword:

Dr. Bergthal, formerly of the University of Cérdova, Argentina, now retired,
visited me at NYU to talk about his proposed new descriptive geometry textbook to be

written in Spanish, of course.

metry called "proyecciones acotadas!' was contagious.

His enthusiasm about the system of descriptive geo-

I had never heard of "indexed

projection' {Dr. Bergthal's preference in English) and it seemed very interesting. I
suggested that he write up a couple of examples and that I would translate the article

into English and submit it to the JOURNAL.

The system which we are calling indexed projection is not new.

In French text-

books it is known as ''géométrie cotée," and the one I have devotes about a third of its
pages to it. In a Spanish textbook used currently in Mexico at least, the first third of
the book is on '"proyecciones acotadas.”" But the system is virtually unknown, I believe,

in the United States.

If so, then I think it is worth while to introduce it in our

JOUR-

NAIL. At the same time, I thank Dr. Bergthal for bringing it to my attention with vigor
and conviction and for doing the. promised exposition.

Two words need careful attention, ''cota' and ”gradua.cién.” "Cota!' is defined as
a numper that corresponds to the distance {rom a plane. If the plane is horizontal,
naturally the cota of a point gives its elevation; but as I understand it, this need not

always be the situation.

Let's accept cota as an English word meaning distance from

a horizontal plane with full interpretation dependent on the context.

"Graduacidn' translates as graduation.

regular divisions of or on a projected line.

Dr. Bergthal's article follows.
I hope I have not failed entirely.

Graduations should be taken to mean the

Traductor es traidor: a translator is a traitor.

LW, ]

Indexed projection is easier than projection
in the Mongean system, simpler and equally pre-
cise. Operations can be performed in the same way
as in Mongean! rotation, auxiliary views, revolu-
tion, sections, shades and shadows, and so on.

Indexed projection does not differ much
from Mongean. Its characteristic is a single view,
for example, a projection on a horizontal plane;
-and instead of a vertical projection or view, num-
bers called "cotas® are super -scripted to give the
relative elevations of points. These numbers are
the distances of points from the basic horizontal
plane of projection, a plane to which the basic hori-
zontal plane of projection, a plane to'which cota-
zero is assigned. Points above the plane are posi~
tive, below negative., And so a point in space is

located by its projection and its cota.

If we imagine spé.ce divided by horizontal
planes one metfer apart, any straight line pierces
these planes in distinct points, The projection of
these points on the horizontal plane of projection
determines the line by means of its graduatibns,
that is, the horizontal distances between the points
along the line. A wvertical line projects as a single
point; a horizontal line has only one cota, eleva-
tion, marked on it.

A particular plane intersecting the horizon-
tal space planes intersects them in horizontal lines
of distinct cotas, elevations. The projection on the
plane of projection of these horizontal lines indexec
with their respective cotas is the representation of
that particular plane. However to represent this

plane on the plane of a drawing, it is enough to

The Journal of Engilneering Graphlcs



draw a line perpendicular to the horizontal lines,
locating on the perpendicular a cota corresponding
to that of each horizontal line. Such a perpendicular
This

line may be placed anywhere on the drawing, but

is known as the line of maximum inclination,

the cotas must be in correspondence with those of
the horizontal lines of the particular plane in which
all these lines lie.

A vertical plane has all its horizontals pro-
jected to coincide in a single line, the trace of that
plane on the horizontal plane of projection.

Two planes intersect in a line common to
both planes, Cotas on such a line are indexed to co-
incide with the cotas of the interéecting horizontals
of both planes. To find the intersection of two given
planes all that needs to be done is to draw two pairs
of horizontal lines with their respective cotas cor-
responding in the two planes. Joining the two points
thus found gives the required line of intersection of
the two planes.

Many planes can be passed through a single
line: the horizontals of such pianes must pass through
corresponding cotas of that line,

T'o determine the intersection of a-line and a
plane the procedure, as in Monge, is to pass a plane
through the given line; the intersection of the two
planes intersects the given line in the required point.
Two intersecting lines share the same cota as their
common point. .

As an example: let it be required to draw
through a point a line perpendicular to a given plane:

Given a plane P by its line of maximum incli-
nation perpendicular to the horizontal lines 1.50
meters apart in horizontal projection {that is, its
graduation) and also given a point M of cota 14,00.

See Fig. 1, in which the scale [escala] is 1:100,

Fall Issue 1963

Required: to draw from point M a line m
perpendicular to plane P and to determine:
l. the intersection K of this line and the plane P
2. the graduation of line m, that is, the horizontal
distance between two consecutive points on it, and
3. the relation and sense of the graduations of both
lines £ and m.
If we imagine space divided by horizontal
planes one meter apart, any inclined plane cuts
these planes in horizontal 1ines hl’ hz, h3,. «s,h

and so on. These horizontal lines form the pla.ne14
P; and a line £, also in plane P but perpendicular
to the horizontals, has the same graduations as

the horizontals which intersect it. Line £ may be
located anywhere in the plane,

From point M we draw a line m perpendi-
cular to plane P. The perpendicular line m through
point M is of course perpendicular to the horizontal
lines of plane P. The projection of line m appears
parallel to the projection of line £,

‘ If through point M we draw a vertical plane
m perpendicular to plane P, then plane w cuts from
We now rotate
The

points a and b at cotas 7 and 11 respectively will

plane P and a line #° parailel to £,

plane m on to the horizontal plane of cota-7.

have the following locations when rotated: point a
of cota -7 will stay at the same place; point b of
cota -11 will be four meters away from line £’, that
is, the difference between cotas 11 and 7. This is
the procedure for obtaining the rotated line (£°}).

Next we rotate point M; in the identical way
we get its distance from £° as 7 meters, th: differ-
ence between cota-14 for m and 7 for the selected
horizontal plane and for line £’

From (M) rotated we draw a perpendicular

to point {K) on (£’); by projecting (K)te £°, K



Escala 1:100

FIG. 1

The Journal of Engineering Graphics



- turns out to be at cota-10, which is a cota common
to K, to plane P, and to line m. Between points
M and K there is a difference in cotas of four
meters; dividing MK into four equal parts we get
on MK cotas 11, 12, and 13; and the graduations
of line m are in a sense contrary to those of line £,
To find the relation of the graduations of {
and m, we determine on £ a point N of cota-14
equal to that of point M, We project point M on
the vertical plane of line £ and we get point
[M(14)].
on the horizontal plane of cota-10 four meters (that

From point K of cota~10 we measure

is, 4 cm., because of the 1:100 scale) and we get
point R. Joining point R with points M and N we
get a triangle with a right angle at point R.
a+f=90°,

The horizontal plane of cota-10 divides
the triangle MRN into two similar triangles MREK

and NRX.

. _ MK
In triangle MRK, tanp = "R
In triangle NREK, tanf = E{N“'KIS
from which
MK _ RK RKZ _ 4% 16
RK ~NKG ME=Rg g "w 75T

Line £ has its graduations determined in
units of 1.5 for a total of 1.5 x4 = 6,00,

unit of line £, whose graduation unit is 1.50,

To one

there corresponds a unit of (.67 of line m perpen-
dicular to line £, These two values are reciprocal,

gince

LR
50 = 0.67

Summary: Two perpendicular lines have
reciprocal graduations and are of opposite sense,
We consider now another problem quite

different in character.

Fall Issue 1963

B, cota-19; C, cota-l4_; and D, cota-5, forming a
space quadrilateral. See Fig. 2.

Required: to cut lines AB, BC, CD, and DA with
a plane such that the section of these lines aﬁd the
plane is a parallelogram and the perimeter of the
parallelogram is 34 meters in length. Scale:
1:100,

The four points A, B, C, and D determine
one combination of planes, ABD and CBD, that in-
tefsect in line r; ancther combination, DAC and
BAC, intersects in line n. All planes parallel to
lines AC and BD cut the space quadrilateral in
a parallelogram.

To determine the length of the parallels-

gram we use the following relationships:

AC=n; BD=r; EF =GH =a;
FG=GH=b; BC=w; BE =7p;
Ez‘f; a_:—E.-;
a p W
r_ w_ ., _zxw-p)
b " w-p* 77 w .

Since 2a + 2b = 34.00 meters
at+ b=17.00 meters

(w-p):np+ rW - pT
w W

17

a+b=2E4 T
W

np+ rw -~ rp = 17w
np-rp=17w- rw

w{l7 - 1)

pon-r)=w(l7-1}); p= o-r

We measure the true lengths of w, n, and r

by rotation: we get w = 9,60 mts.
n = 14,80 mis.
r = 18.40 mts,

The rotation is based on the difference between the

cotas of the ends of each line,

Given: four noncoplanar points in space: A, cota-10;
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_ 9.60(17 - 18,40)

14,80 -.18.40. 3.73

The other cotas corresponding to the points F, G,

LT

_pn _ 3.73(14.80) _
a = - = —'—m—-—'“'-—-— 5.80
b=17.00 -a =17.00-5.80=11.20

The rotation of the lines EF =a and EH = b veri-
fies these calculations.

To draw the parallelogram EFGH it is suf-
ficient to find only one point, E, and then by draw-
ing parallels to AC and BD we find the required
parallelogram,

To determine the cotas of the vertices of
the parallelogram do a graphical or a numerical
interpolation. The cota of point E suggests the
following graphical procedure, From point C
draw any line; at any convenient scale, say 1:50,
enter cotas on the line from 14, corresponding to
Next

connect point 19 to point B and then draw from

point C, to 19, corresponding to point B.
point E a'parallel to B-19. Where this parallel
intersects line C-19 will be obtained with exact-

ness the reguired cota, in this case cota-17.

and -k

are-found-in-the-sarme way:

Notice that in the parallelogram EFGH the

parallels EH and FG have the same difference in

their end cotas since

15,50 - 7.00 = 17.00 - 8,50 = 8.50 .

The same of course happens with the. paralliels
EF and GH:

17.00 - 15.50 = 8,50 - 7,00 = 1,50 .

Finally, it can be shown that points A, B, C,
In the

place where the lines r and n apparently inter-

and D do not belong to the same plane.

sect in projection, by means of interpolation of
cotas the line AC has cota-12 at point n' and the
line BD has cota-11.40 at point r!, so that r' is
See Fig. 2.

To determine the angles of the parallelogram

therefore below n' .,

it is necessary to find the true length of one of its
diagonals, in accordance with established pro-

cedures.

Continued from page @29

Nominating Committee:
J.5., Blackman
E.M, Griswold
R.E. Lewls
I. Wladaver
J.8. Rising, Chairman

(From By-Laws of the Division)

A properly prepared petition nominating
a member for any office, that bears ten (10)
signatures of members of the Division and
Society shall require the nominating com-
mittee to place the name on the ballot,

The nomination period must be considered
as being closed at the end of the last con-
ference session of the mid-winter meeting.
A petltion for nomination received after
the close of the mid-winter meeting cannot
be accepted. A conference session is here-
in defined as a regularly scheduled meeting

at which papers are presented for discussion.

Fall Issue 1963

NOMINATION FOR DISTINGUISHED SERVICE AWARD
|——— ]

Any member of the Division who would like
to nominate a candidate for the Distinguish-
ed Service Award is invited to send the name
of his candidate to any of the members of
the Committee on Special Awards. It isn't
hecessary to start a campalign before the
election; Just write to any committeeman
whose name is appended below,

Anyone who would like to be considered
by the Committee on Nominations for some
office of the Divislon may send his own name
to any member of the Nomlnating Committee
for consideration,

Both Committees consist of:

Edward M. Griswold

Matthew McNeary

Irwin Wliadaver,
Chairman
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Announcement

Descriptive Geomeiry Award

The Committee for Descriptive Geometry Award of the Engineering Graphics
Division is pleased to announce that the Gramercy Guild Group, Inc., has
again offered to provide $100 for an award in the Descriptive Geometry
competition, The Committee has established the following rules for eligi-
bility:

1, An article involving descriptive geometry in the solution of a problem or
an article on descriptive geometry may compete,

2. The article must have been published in a periodical,

3, The article must have appeared in an issue between the dates of
January 1963 and December 1963 inclusive.

4, Descriptive Geometry must be the primary interest of the article.

5, The article must be brought to the attention of the Committee, - The
Committee will naturally search diligently for all such articles but
is not responsible for finding all such articles,

6, The article will be judged on originality, resourcefulness, and effective-
ness, The drafting and the use of drafting aids, etc., should be compe-
tent, but are secondary considerations.

7. A majority of the committee votes received will determine the winner,

8. The winner will be announced at the Annual Dinner .meeting in June and the
award will be made at that time,

The Committee is undertaking a search of the periodical literature and as
this is an extensive job any suggestions of suitable articles or references will
be greatly appreciated.

Kindly send any information regarding possible articles to any one of the
Committee members.

Committee: Ivan 1., Hill, Chairman
Tilinois Institute of Technology

S, M. Slaby
Princeton University

A, S, Palmerlee
University of Kansas

J. M. Coke
Colorado School of Mines

A, L., Hoag
University of Washington

The Journal of Englneering Graphics



THE PLACE OF THE DIGITAL COMPUTER IN GRAPHICS
"INSTRUCTION -AND-THE PURPOSE OF FLOW-DIAGRAMS

i

Given at the Engineering Graphics workshop in con-
Junction with the 1962 ASEE meeting at the Air Force

Academy,

The bulk of this morning's instruction
and work has involved the analog computer,
I have been asked to discuss the digital
computer., 1In order to show how the digi-
tal computer fits into the picture, I will
divide this discussion into three parts, to
wit:

1. A comparison of analog and digital
computers,

2., How the subJect of digital computer
programming can be fitted into a gra-
phles course,

3, Flow diagrames, why they are used and
what some typlcal flow diagrams look
1ike.

To commence the first of these three,
we can say that a mechanical system con-
sisting of masses, springs, and dampers
can be represented in terms of an elec-
trical analog (analogy) made up of capac-
itors, inductors and resistors., If such
an elctrical analog is constructed physi-
cally and the performance 1is measured as
a means of studying the original mechan-
ical system, then analog computation is

being used. 1Instead of simulating a giv-
en system with an element-for-element an-
alogy, an analog computer generally slm-
ulates a set of equations with an assem-
blage of physical devices that carry out
simultaneously the various mathematical
operations specified in a set of eguations,
Such a computer can handle differential as
well as algebrailc eguations; in so dolng
it provides continuous integration and
differentation of the variables as re-
quired. 8o much for the analog computer.

Digital computers are essentially ar-
ithmetic counting machines that solve
mathematical problems largely by employ-
ing a simple step-by-step process of count-
ing. By performing these counting (and
associated) operations at enormously high
speeds they make it possible to employ

Fall Issue « 1963

Charles J. Baer, Unlversity of Kansas,

various approximation procedures involving
a high degree of iteration. These opera-
tions are performed by providing a program
of 1lnstruction in which the operations are
broken down into a series of additions,
subtractions and other similar operations.
This lends itself {0 extended approximation
procedures from which any number of sig-
nificant figures 1s attainable, Whereas

the results of an analog computer's out-
put are freguently read on a meter or os-
c¢illloscope, or displayed in graphlcal form,
the results of a digital computer’'s com-
putation are usually printed on a sheet of
paper 1n several columns of figures car-
ried to & or 10 significant figures., In
other wordes the output of digital compu-
ters 1is oftem much more accurate than that
of analog computers.

Another difference between the two types

of computers has been in the matter of mem-
ory or storage., It is possible, and cus-
tomary, to store written programs, sub-

routines, and great quantities of data in
the memory unit of a digital computer.

. It has not been possible to do this in

most analog computers.

However, some of the differences be-
tween the two types of computers have dis-
appeared, or at least diminlshed, when
some recently-designed computers are com-
pared. In one analog computer a high-
speed memory unit has been installed and
successfully cperated. It is--or soon
wlll be--possible to procure hardware for
a new ana.og computer that will print out
the answers in digital arrangement simi-
lar to the output of a diglital computer.

Conversely, 1t is now possible to buy
hardware for a digital computer that will
enable the answers to be printed in graph-
ical form., In fact, the automatic draft-
ing machine operates as part of a digital
computer package.

13



In summary, then we can say that an
analog computer is less accurate than a
digital computer but easler to program:
it can perform differentiation as well as
integration, but 1s not as useful as its
digital counterpart for processing large
volumes of data. The ordigital computer is
more accurate and at the same time more
difficult to program. It can perform intee
gration, but not differentiation, and 1is

quite capable of processing large amounts of

data,

Now, for the aspect of teaching digi-
tal computer programming in engineering
graphics classes, Why are we dolng 1t?

We are doing it primarily because we were
asked to do it by our largest degree-grant-
ing department. This is a department whose
curriculum is bursting at the seams and
which feels that there is nct enough room
or time for a computer course. Therefore,
we began to offer in 1960 about 5 contact
hours of computer instruction to all stud-
ents in the second of our two integrated
graphlics courses, 3Since that time we

have found 1f necessary, in order to do a
decent Job, to lncrease this class-time to
about seven hours. Outside reading and
time spent programming a simple problem
amount to another three to five hours.

Other reasons for offering this instruc-
tion are: (1) a chance to move into a
rather new field, (2) a chance to upgrade
ourselves as professionals, a chance to
show that some graphlcal or semi-graphi-
cal problems can be solved on the digital
computers, and (3) an oppertunity to get
some Interesting material into the curric-
ulum during the freshman year. (We are
losing freshman engineers at an alarming
rate, and feel that this introduction to
computers will help to make the freshman
year a little more attractive,)

How can dlgital computer instruction
be fitted into a graphics course? At
first it will have %o be treated as a sep-
arate subject. The characteristics and
peculiarities of one (or several) compu-
ter(s) will have to be discussed, The
language of the computer to be used must
be explained, Then a simple (A+ B)/C
type of problem will help to tie things
together and will prepare students to un-
derstand Jjust how a program is written,
Also, during this introductory phase of
the subJect, the computer flc diagram
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can be (and should be) introduced and ex-
plained. The flow diagram is a graphical
device which most experts agree 1s neces-
sary for the proper planning and trouble-

shooting of' a program., A flow diagram al-
80 makes 1t easler for an instructor to ex-
plain an example program to a class. Aftex

a sample program or two and flow charting
have been presented to a class, exXample
problems involving graphical situations
can be presented. Now, the students can
follow reasonally well programs for the
Method of Least Squares, the Method of Av-
erages, Simpson's Rule, and the Trapezoid-
al Method for obtalning the area under a
ecurve, These are not the only graphlcal
type of problem thaft can be put on a dig-
ital computer. But they are the type of
graphics problems we happen to be offering
in this particular course at thls time,
Thus, we feel that computer instructlon
ties in nicely with graphics at our school,

Now, let ug take a look at flow dlagrams
You have seen the flow diagrams for the an-
alog problem worked in c¢lass. This type of
dlagram is conslderably different than the
type used for digltal computers, F£/&. 1
shows the analog flow diagram. Here you
see combinaticns of integrators patched to
solve a double integration problem. If
you look closely and think back to this
morning's problem, you can visuallze, at
least in part, the elecétrical simulation
of the problem,

The next F/¢. ( F/&. 2) shows the typ-
ical components of flow dlagrams for dig-
ital computer programming. Two styles are
in wide use today. That on the left was
developed by perscns uslng punched-card

machines. Recause punched cards are syn-
onymousg (but not exclusively so) with IBM
equipment, and because IBM has sold more
than 50% of the computers in use so far,
it goes without saying that many program-
mers use style A, However, style B has
been adopted by a national organization
of computer operators, and thus also is
beilng used extensively. (Note R:0, a
"logic" step, means: "Is R equal to
zero?" This will be explained on the next
slide.)

FIEURE 3 ghows a flow diagram us-~
ing style A for Cramer's Rule which is us-
ed to solve two or three simultaneocus eq-
uations using determinants, This diagranm
is essentially left %o right in flow,
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If Z is any value except zero, we move al-
ong to the main argument, get the answer,
punch it, and return for another set of
variables, But if 2 should happen to eq-
ual zero, we take the upper path and punch
out a bunch of zeros (or the word ZERO) to
indicate that Z2 is zero. Thls program is
designed to solve two simultaneous eq-
uations for many values of a, b, ¢, d. It
goes around and around until all the ini-
tlal pieces of data have been processed.

Figure 4 + presents a diagram
using style B for a simple program in which
we add 800 numbers starting with 1, 2, and
so on. This shows an initializing block,
the argument {function) block, two incre-
menting blocks, and so on, Both figures
3 and 4 illustrate two important points
about flow diagrams,

1, Diagrams written in this general
algebraic form will work for any
digital computer.

2. Diagrams can be as general or as
complicated as the programmer wishes,

Both of these example diagrams are fairly

general., For Instance, the lnitializing
bleek contalns 3 elements, We could have
made a separate block for each of these
steps had we wanted to, Conversely we

could have combined the two incrementing
steps into one block. Whether several steps

w

~1go -

the programmer,

Flgure 5 shows a somewhat different
type of diagram. This is definitely a
step-by=-step diagram. Only part of the
diagram 1s shown, This diagram differs
from the previous two 1n that it starts
at the upper left, goes down, then up, and
80 on. And it also can be used for only
one particular computer, the Royal McBee
LGP 30, This 1s because it is written in
machine language, rather than in general
algebralc terms of the type shown in the
preceding two diagrams., This flow dia-
gram 1ls too detailed to give a good over-
all plcture of the problem but would be
very helpful in debugging a program if
trouble develops. In wrilting az program in
machine language, some programmers might
make two diagrams, one of a rather general

‘nature defining the problems, and another

of a detalled step-by-step type. As com-
puters become more sophisticated, they will
use a language that is more nearly like our
own written English and mathematical lang-
uage, and we will use less and less of the
machine language typified by this problem.

I hope that you have been able to see
the importance of the flow diagram ir com=
puter programming, today. These dlagrams
are very helpful, if not necessary, d-
Juncts to programming both analog and dig-
ital computers,

-] Bx /oo
< < O

FIGURE 1

Voiume of object with varying radius and length.
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ENGINEERING GRAPHICS- GENESIS TO ENGINEERING DEVELOPMENT

Earl D,

Black

: Senior Instructional Speciallst
) Product Engineering Department
General Motors Instltute

Today, we are often Jarred inte frusta-
tion by those who expostulate with, "Let
us educate (teach, train, develop) the stu-
dent of engineering with the knowledge that
he will need - say five, ten, or more years
from now." This challenge starts a chain
reaction of conversation and soon some brave

soul asks: "Precisely, what will the engin-
eering student need by that time?" Thus,
the conference turns into a long and point-
less tirade by some individual who begins

to sound like a prophet,

About the only obvious fact is that the
engineer of the future wlll need two eyes
with which to see, twe ears wlth which to

" hear, two hands and two feet that move, a
nose with which to smell, a body that holds
himself together,. a mouth that talks, and
the development of hils mental faculties
through acquisition of usable knowledge and
experience,

. "Someone may suggest that the engineering
student should he required to learn the
basic fundamentals of his chosen field.
But then the argument continues into the
wee hours of the morning with variocus memb-
ers of the conference debating fundamental
principles versus speclalization and obso-
lescence. .The group then retires confused,
befuddled, and unsatisfied, having arrived
at no absolute solution to the question as
to the. acope of fundamentals required for
a given curriculum,

Cne may rightly call attentlion to the
fact that curriculum construction is only
part of the problem, What about the selec-
tion of students who are interested 1in be-
coming an engineer, as well as students who

have the required elementary and high school

background, and who have the ability to
learn? And how about a dedicated and com-

petent faculty?
COURSE AND TEACHING OBJECTIVES

I was once asked to formulate departmen-
tal objectives for engineering graphics.
The result ig quoted below for examination:

Fall Issue - 1963

"To develop a dedicated faculty who
have attained recognized ablility in
graphical communication and engineer-
ing design dealling with both estab-
lished and new developments in engin-
eering science and technology."

A few months later the request was to
provide a statement of general objectives .
for engineering graphics. Objectives sub-
mitted:

"Engineering graphics should develop
the engineering student's ability to
use sound judgment, to appreciate the
importance of aesthetics, to commun-
lcate ideas clearly and accurately,
and develop his creative talents by
improved analysls and synthesis with
the methodology invelved in perform-
ing the design function of engineer-
ing.'

The critical problem is twofold. First,
how can these objectives be successfully
achieved 1n the alloted time for this part
of the undergraduate curriculum?® Second,
how can we recognize and isolate the requir-
ed fundamental items of knowledge into log-
ical and progressively related units of in-
struction?

Scientific discoverlies become useful on-
ly when they are applied to machines, ve-
hicles, processes, and products wanted by
mankind, Industry in general is more in-
terested in graduates who are well quali-
fied in fundamentals rather than descrip-
tive courses. To assure increasing and
effective individual performance, we must
find that formula which includes the know-
ledge that best fits the engineer for per-
formance of his Jjob responsibilities. The
student must develop as an individual, as a
member of a team group, and as a desirable
ecitizen in his community.

In engineering graphics the student
should develop his ability to communicate
specifically and accurately in graphical
form. The student should be initiated
into elements of design and design analy-
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sis. He should learn to recognize the
value of working drawings. He should un-
derstand the theory of orthograpnic pro-
jection principles and be able to use
layouts as a basls for developing design
ideas to usgeful functlon,

A basic course in engineering graphics
will fall short if it does not include
practice in making sketches, freehand and
semi-freenand drawings, and pictorial
drawings as a means of accurately commun-
1cating engineering intent. The student
should be taught the proper use of ade-
quate dimensioning systems and how to
express specificdtions and instructional
notes required for fabrication. He should
be able to formulate technlcal directions
in simple, precise, and clearly understand-
able terms.

Engineering graphics should help the
student acquire an attitude of critical
analysis and constructive thinking in
solving progressively difficult problems
in design. The student should be encour-
aged to acquire basic principles required
for pursuing later studiles in englneering
science which require graphical communi-
cation.

The student should learn how to com-
bine graphical and mathematlcal methods
in solving design problems common to sci-
ence and engineering. He should develop
an ability to visualize and anticlpate
fubure difficulties in constructlon, as-
sembly, marketing, and servicing of pro-
ducts by analysis of component parts. He
should learn how to avoid the pitfalls of
under or over design. He should acquire
some ski1ll in applying graphical methods
in analyzing space concepts and solving
problemsg typical of associated courses
in the engineerlng curriculum.

HELPING THE STUDENT LEARN JOB REQUIREMENTS

Courses in engineering graphies should
be so designed as to help the student meet
job responslbilities. The teacher should
guide the student in acquiring personal
qualifications compatible with the job.
The student must learn to exXercise sound
judgment in his relationship with hls fel-
low workmen.

-He should learn to respect author-
ity.

-He sghould have good health - and
especially geood vision,

-He should be willing to work and
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recognize that work is the source of
material growth and spiritual fulfill-
ment. He should be encouraged to have
an ambition for the job; he should be
interested in becoming the best engin-
eer that his personal qualifications
will permit.

-He should be encouraged to set an
attainable goal for himself and to have
a program for self-development.

-He should be able to think construc-
tively, plan ahead, and organize work
procedures,

-He should have self-initlative bdut
he should be able to follow instructions.

-He ghould be able fo effectively
use oral, written, and graphical com-
munication and recognize the advantages
of each with proper integration of thelr
uses,

Some ¢ollieges and unlversities give
standardized tests which assist in deter-
mining student deficiencies. Personal 1in-
terviews, group conferences, and comprehen-
sive tests are likely to reveal probable
reactions of the student to work situatlons.
A record of his past performance, scholar-
ship, personal attalnments and character
references from teachers, supervisors, and
landlady undoubtedly will give some indica-
tion of the student's probable succegs as
an engineer. The teacher should assist the
student 1n Job qualification rather than
having him become a Job misfit,

FRONTIER AREAS

Let us examine a few frontier areas of
engineering science which are based on to-
day's technology. Many phases of engin-
eering technology are fast becoming obso-
iete to the extent that the student 1s be-
ing asked to forget some of the ltems learn-
ed as a sopomore by the time he has become
a senlor.

Direct energy and energy conversion pro-
cesses are taking the place of mechanlcal
fabrication methods. The number of proces-
ses avallable to do a specific Jjob, and the
number of baslc sclentific principles being
introduced into manufacturing ilnclude deep-
rocoted changes in application of the funda-
mental sclences,

Present-day computer methods permlt the
coordination of entire mamnufacturing sys-
tems. The student is expected to know
about new materials and materials handling.
There 1s a complete broadening of the scope
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“bf“fédﬁiféd“knowledge for today's practicing
engineer,

It has become increasingly important for
the englneering teacher to help his stud-
ents set a pattern of continued learning
after graduation in order %fo meet the chal-
lenge of the ever changing technology.

The competitive world economy demands
that we excell in the quality of our tech-
nological manpower and improved industrial
systems, The growing scientific knowledge
is constantly changing our environmental
relationship as to time, position in the
universe, and speed wlth which we must get
things done. It is important that we im-
prove the liaison between englneering ed-
ucators and industrial management, We dare
not make an error in our choice of knowledg-
able facts and methods of procedures if we
: expect to keep abreast with other professions
> 1n this space age.

THE TEACHING FACULTY

Effective teaching requires careful plan-
ning and properly prepared teachers who Know
"how to get things across" to others. The
teacher's job 1s primarily getting the stu-
dent to acquire specific knowledge and de-
velop an abllity to make necessary appli-
cations common to the profession.

Members of the faculty, who teach engin-
eering graphlcs courses, should be familiar
with the various classiflceations of the en-
gineering profession. They should be well
grounded In physlics and mathematics. They
should understand the psychology of human

behavier. The teacher should also be pro-

fileclent In the use of 7ils native language,
He should set his students a good example

by using good oral and written language as
well as proper integration of their use with
graphical communication,

The better teacher carefully inspects
his own effectiveness and adjusts his ap-
proach to unexpected requirements of the
teaching situation. He thoroughly and cor-
rectly analyzes the instructional coverage
in terms of basic 1tems of knowledge which
must be "put across." He coordinates the
timing of the current units to be taught
with what has been taught as well as with
what is yet to be taught. He thoroughly
prepares the lesson to be taught before he
begins the presentation. He places the stu-
dent 1in a trial situation and inspects the
student's ability to make desired applica-
tions of knowledgable facts and secientific
principles. During the instructional pro-
cess the teacher should make adjustments in
the rhythm of instruction to individual dif-
ferences of students.

The attitude of both the teacher and
the student is very important. Both must
be Iinterested to achieve effective learn-
ing on the part of the student. The stu-
dent must have a chance to participate to
achieve lasting knowledge. He must wang
to learn. Often the teacher of engineering
graphics has the best opportunity to acti-
vate and develop the student's interest
and inspire in him a growing desire to
learn the broader application of engineer-
ing. ‘

Contributed by Ernest R.
Pennsylvania State University

Engineering Graphics,

GRAPHICS TANTILIZER

Weidhaas, Assoclate Professor in charge,

A materials conveyor cart 3' wide x 6' long runs in a tunnel

housing with vertical walls 5' apart,

What 1s the sharpest 90° turn that may be specified allowing
a minimum clearance of 6" between cart and wall?
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Elerentary Nomography

J. Norman Arnold, Professor of Pngineering Graphics
Purdue University

INTROICTION

This written report attempts to set down the content of the session
on Elementary Nomography #s carried out during the summer school of the
Division of Engineering Graphics held at the Air Fdrce_Academy in June 1962.
The actual summer school session permitted: step-by-step development of
definitions and theory, the working of an example, discussion of alternate
methods at certain points; Tollowed by the solution of a problem by the
participants. Each participant was aided, as necessary, in his solution of
the problém before proceeding to the next topic.

Publication is a more restrictive form of presentation The reader
cannot as readily ask questions, for example. Also, he 1s very unlikely to
interrupt his reading to solve a problem at the time which might be most
helpful to his understanding.

FUNCTIONAL SCALE

The fundamentsl element of a nomogram is a graduated scale; it may be
straight or curved, include a zerc value or not, beuniformly graduated or
non-uniform in nature. The designer of a nomogram often has some choice in
the type of scale he selects, but his choice cannot be entirely arbitrary.

The choice is dependent upon the mathematical, or funetional, relationship

between the quantities represented. Logarithmic scales, such as found on
siide rules, often are appropriate elements of nomograms.

An example of a functicnal scale is'shown in Pig. 1; it is curved, non-
uniform, and does not extend to zero. It should be noted that the graduation

strokes for the scale are made perpendicular to the curve tangent; number-

bearing strokes (and like ones not numbered) are longer; the graduation basis

is changed only at a number, never between numbers (see 50, for example).
Numbers are not placed at all long graduations, particularly if they would

" be crowded.

The proportions of such a scale often may be enlarged to pernit more
accurate reading, or the proportions may need %o be reduced in order that
the scale mey it in a limited space. The factor of proportion is called
modulus.1 '

The example in the next section should aid in demonstrating the useful~
ness of functional scales and in explaining the meaning of the term modulus.

ADJACENT FUNCTIONAL SCALES
A mathemetical relationship between two varilables, u and v, expressed

generally as fl(v) = fg(u) (1)
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of a line, and a scale:for v on the other side. The necessary condltion
which hust be fulfilled by the nomogram is that the same,fungtional modulus
{or sbale factor) is used for each scale -- the one for u and the one for v.

EXAMPﬁE As an example, the equation for area of a circle
A= @) 07 (2)

is shown in adjacent scale form in Fig. 2, which has a wnifor: A-scale. In
the otiginal drawing the functional modulus of the A-scale was selected as
0.1 in., making the length of the scale from O to 80 just 8.0 in., since
0.1x80 = 8.0. Distances on the Dewscale were constructed with the same func-
ticnal medulus of 0.1 in., For integral values of D, the distances on the
original drawing wmust be 0.1{/k), or 0.07854%, multiplied by the squares of D,
which are: 1, &, 9, 16, 25, 36, 49, 64, 81, and 100. From the O to the 10
of D is then 7.854 in. Additional computation and measurement, or sometimes
graphical interpolation, are necessary to locate intermediate graduﬁtionﬁ.

A constant multiplier times the functional modults is called ggagg modulus.
In this example the scale modulus for the D-scale is 0.167/4), or 0.0785h.
PROBLEM The D-scale in the foregoing example 1s non-wniform and difficult +o

e
read accurately at the low-number end. If the equation were written D = 7(k/fr)A

a uniform D-scale would result, and the A-scele would be non-uniform, and
compressed at the high-number end. A compromise form results if the equation

is written

@) 25 = /2303 < 0.85(0)"3

Prepare an adjacent scale nomogram for the equation in this form. Values of
A of 0, 5, 10, "°'80 when raised to the 2/3 power are approximstely as follows:

0, 2.93, k.65, 6.09, 7.37, 8.55, 9.66, 10.7, 11.7, 12.6, 13.6, 1k.5, 15.3, 16.2,

17.0, 17.8, 18.6. TFor values of D of 0, 1, 2," "10 the corresponding values

ot 0.85(0)"/3 ave: 0, 0.85, 2.14, 3.68, 5.40, 7.27, 9.26, 1L.h, 13.6, 15.9, 18.3.

The resder will find that a Ffunetional modulus of 0.5 in. (or the 20-scale on
the engineers scale) will result in a scale length slightly greater than 9 in.

PARALTEL SCALE NOMOGRAM
The type of equation which mey be represented ir nomogram with three

parallel seales is

£1(w) + £,(v) = £5(w) - (3)
and in dlagram form, Fig. 3, the nomogram ig used by laying a straight edge
across the three scales, perhaps through a known valﬁe of u end a known value
of v, and reading the corresponding value of w. If u and w happen to be known
guantities, or if v and v are the known quantities, the straight line will lo-
cate corresponding values of v or of u to satisfy Eq. (3).
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From proportions in similar triangles of Fig. 4 it can be determined that
the functional moduli of the several scales and the spacing of scales must be

related as follcws.2
= l
a/b mu/mv (4)
and _
l/mw = l/m.u + l/mv (5)

Another form of Eg. (5) that is sometimes useful is

m = (mm )/(m +m )
EXAMPTIE The area of material cross-sectlon for a-hollow tube 1s given by

s = (/h) (1° - &) | (6)
where D is outside diameter and d is inside diameter. For a range of values
of D from O to 10 in. and 4 from O to 8 in. design a parallel scale alignment
chart to solve Eq. (6).

The equation as given has a minus sign. If the D and d scales are to be
the outside ones the direction of inereasing values for 4 would be opposite to
S and D. All positive signs would result and all scales would increase in the
sme direction if the equation is written

&+ s =17
If a functional modulus of 1/6 in. is selected for the d-scale, its length
would be 10.67 in. The scales will be equally spaced if the same modulus of 1/6
in. is used for the S~scale. Plotting the scales with 2 modulus of 1/6 in. is
made easy by the 60-scale. The aquares of d of 0, 1, 4, 9, 16, 25, 36, k9,
and 64 are computed first, then these distances are laid off with the 60-scale,
choosing 6 units for 1 in. Each inch on the architect's 1" = 1'-0" gecale
corresponds to 1/12 in. and facilitates plotting the S-secale. However, the
value of S5 must be multiplied by h/n‘, or 1.27. This can be done graphically
using a dlagonal line and jparallels, or 1t can be done numerically.

Principal graduations only are included on Fig. 5 for this example. Fuller
graduation would generally be preferred; graphical interpolation or additional

numerical computations can be used to locate additional graduations.

PROBIEM For 1962 and for a number of earlier years the U.S. federal income tax
on the besis of the standard deduction, for the lowest tax bracket, has been
computed from

T = 0.2(0.98 - 600E) = 0.185 - 120E (1)

For a wmarried taxpayer Eg. (7} holds for S up to $10,000 and up to a tax, T,
of $1600; for S greater than $10,000 the equation is modified to

T = 0.2(8 - 1000 = 60CE) = 0.25 -~ 200 ~ 120E (&)

| |
Am @)
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e e e Aga.ln ..... 'thisformofequation applies ..up..to T 0f$l600- The q_uantity,E,iS SRR
number of exemptions, and is an integer. If the taxpayer or spouse is over 65

years of age, E is increased; if either is blind, it 1s increased. Each

4mwaioe orAIETER dependent increases E by one. Prepare a parallel scale nomogram for Eq. (T)

-
| 1 | | H |

and (8) for E from 2 to 8, and for gross income, S, up ‘to $1k,000.
The scales of thls nomogram will all be uniform. The coefficients 0.18,
0.2, and 120 provide a puzzling feature for the beginner in nomography, but,

D+ QUTSIDE DIAMETER
Baa R owm B oy - - B
i - I |

this is a good problem for clarifying the effect of mltiplying constants.
One solution in outline only, is indicated in Fig. 6. This is based upon
the term for E being transposed so that

i

, | T + 120E = 0.188 (S:up to 10,000)

oz
o
o
ag~

5 T + 120E = 0.28 - 200 {S:10,000 +)

Folded scales for 8 and for T would permit larger moduli to be used for the
same space requirements, and would provide slightly greater sccuracy. The T-
scale might range from O to 1000 on one side of the line, and the opposite side
of the line might carry T from 600 to 1600. An associated folded S-scale would
be required ranging up to 10,000 cn one side of the line and from I, 000 to
14,000 on the opposite of the line. On the T-scale the same graduations could
serve for both ranges of the scale. This is not true for S. TIn part of its
range the funciion is 0.18S; in another part it is 0.28 - 200. A diagram of
this nomogram is shown in Fig. 7.

PARALLET, SCALE NOMOGRAM (PRODUCTS OR QUOTIENTS)

Products or quotients of variables, even raised to constant powers, can be
rut in the form of Eg. (3} by taking 1ogarithms.3
FXAMPLE The volume of a cylindrical tank, for example is

= (w/s) 1 & | (9)
where It 15 diameter in £+, H is height in ft, and V is volume in cu T%. In-log
form

log V¥ = log (W/h) + 21og D + log H
If D and B both range from 1 to 10, prepare a parallel scale nonogramn for Eq. (9).
The H and D scales can correspond to the C or D scale on a standard étraight slide
rule. The coefficient 2 on the log D term means that the functional modulus, Ty
for the diameter scale is half as much as My if both are to have the same length
of scale and range. The signs for the log terms of D, H, and V are all +, s0
that if' V is made the middle secale all will increase in the same direction. The
\ modulus, m , 10/3 means that the V scale is like the K scale of a standard
straight slide rule. The effect of the added constant, log (W/4) is merely
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10.

in Fig. 8.
PROBIEM The equation for torsion in a shaft

D = 3|/;_62
e (10)

where D is diameter in inches, T is torque in in.-lb, and S is shear in
lb/ :ln.2 » can be put into a parallel scale nomogram. Design the chart if D
ranges from 1 to 2, and S ranges from 20,000 to 50,000.

A good first step is to cube Eq. (10), take logarithms, and possibly
transpose terms, making it |

t——mu flu)-

|——m,£(w)-{

log T =3 log D+ log 8 + log{®/16)
A disgram of one possible design is given in Fig. 9. Constructing the D-secale
is possibly laborious unless one has at hand log scales of various moduli.
Ir oy of 10 is selected, the D-scale is essentially like the portion from 1 to 2
" on the -?:[""' scale of some Picke'{;t glide rules. _ The S~scale, for ms of 20, is
like the R-scale of a Post slide rule or the "f- dcale on some Pickett slide rules.
‘Digtances on the T-scale would be 2/ 3- as great as on a C-scale of one of the
foregoing slide rules. Sbme of the value on the 1a.s£ scale to be prepa'red would
need to be determined by solving an example‘mathemtically_ and by laying s

straight-~edge across the scalés. T E i ; I
_ 500 200 00 . 200 100 o
D SKID DISTANCE

Z= OR N=-CHART
Another common form of straight scale nomogram has the scales arranged in 2
the shspe of the letters Z or N.h_ The typical equation for this nomogram is ‘s\*q‘p
k)
= B
iy
and distances along the diagonal, of length H, for graduations of w, Fig. 10, o

are given by

é‘?,o
P=H f3(w) / mv/mu + f3(w). (12) A

where mu and mv are functional moduli of the u sand v scales.

£ - COFFEICIENT OF FRICTION
S 98 a1 06 o5 o4 2.3 ag

o

| : J

Fall Issue « 1963



EXAMPLE Experiments in braking an automcbile indieate that the length of skid
marks is approximately given by '

a ) 2
D=V"/30f, or 30D = T
/305, or 3 v/ the brakes are applied, in miles (13)

vhere D is skid mark length in feet; V is speed of vehicle at the time per hour;
I is coefficient of friction. This equation is in an appropriate form for pre-
paring a Z~chart, with D for the diagonal scale. The terms can be rearranged

in other forms, such as
£ = V230D or V° = 300/(s)™

corresponding to the I-scale or the V-scale being on the diagonal. A design
is carried through for the form

vZ = 300/(r) "

‘and for D from O to 600 ft; £ from 0.2 to 0.9. IT the D-scale is to be g in.
long, then 9/(30 x 600), or 1/2000 in. is the value of ty. If © ranges from
0.2 to 0.9, then 1/f ranges from 5 to 1.11, or a modulus, me, of 2 would make
a scale 2(5 ~ 1.11), or 7.78 in. long. If the diagonal from 1/f = O, or

I =e, to D=0 is made 15 in. long then graduation positions along the diagonal

for the V-scale can be computed from
P = 15V°/(2/0.0005 + ¥3) = 15V°/(4000 + V°) (14)

For V of 20, 30, ... 90 one may verify that the corresponding values of P
are: 1.36, 2.76, k.20, 5.78, 7.10, B8.26, 9.23, and 10.0% in; The nomogram is
shown in Fig. 11.

It will be observed also that if £ is 0.333, then 30f = 10, or D would be
equal to V2/10. Thus, if a pole at I = 0.333 35 used, the above V-scale gradu-
ations in steps of 10 mph can be readily located by drawing index lines from
f of 0.333 to values of D of L0, 90, 160, 250, 360, 490, 640, and 810. The last
two points might be located using as a pole F = 0.666, for which D = VE/EO, or
is 320 and 405 for V of 80 and 90.

Intermediate graduations on the f-scale and on the diagonal can be located

by graphical interpolation or by computation.

PROBLEM Prepare a nomogram for the same equation plecing D on the diasgonal seale.
A user of the chart might be advised that C.7 1s an average value of £ for
dry pavement, and 0.4 for wet pavement.
{appropriate values for m, and . are respectively, 0.001 and 10 if the
equation is written 30D = V9/f.)

‘gl
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TR STRATIT SRAE Nocam
Another form of straight-scale nomogram for three varisbles is shown in
diegram form in Fig. 12. No proof or example is included here.”
Combinations of these straight-scale forms, as indicgted in Fig. 13, are
useful for four variable relationships, and may bé extended to five~variahles
and more.6 The necessary condlition which must be fulfilled is that the secale
common to two elementary nomograms must have the same modulus and same direction
as a part of each. ' '
Other variastions employ perpendicular index lines, or parallel index lines,
as indicated in diagram form in Fig. 1.
SUMMARY
As shown, a variety of types of formilas is solvable on nomograms composed
of straight scales. Many different mathematical functions can be incorporated in
8 graduated scale. The foregoing several examples and problems include: uniform,
squared, sguare root, reciprocal, and logarithmic scales. These and the outline
of general principles indicate the usefulness of nomograms for representing and com-
puting with formulas which must be repestedly solved.
Nomograms with curved scales and some other straight-scale forms not mentioned
here permit even greater compiexity in the formulas which can be solved.

e :

loee Art. 3.4 and 3.5 of Hoelscher, Arnold and Pierce, Graphic Aids In
Engineering Computation, McGraw-Hill, 1952. See Chap. 2 of Levens,
Nomography, 2nd Edition, John Wiley & Sons, Inc., 1959.

2See Art. 3.9 of Hoelscher, Arnold and Pierce, Graphic Alds in Engineering

Computation, McGraw-Hill, 1952. See Chap. 3 of Levens, Nomography, 2nd
Bdition, John Wiley & Sons, Inc., 1959.

3See Art. 3.10 of Hoelscher et al. See Chap. 3 of Levens.

-uSee Art. 3.13 of Hoelscher et al. See Chap. 5 of Levens.

Yee Art. 3.17 of Hoelscher et al. See Chap. 6 of levens.

6See Arts. 3.11, 3.1&, 3.15, 3.16 in Hoelscher et al. See Chaps. 7, 8, 9 in Levens.
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Distinguished Service Award
of the
Division of Engineering Graphics
. to '

] THEODORE T, AAKHUS

Theodore T. Aakhus, Professor of Engln-
eering Drawing at the University of Neb-
raska, 1s the wlnner of the Distingulshed
Service Award of 1963.

The purpose of the Distinguished Service
Award is to recognlze and encourage out-
standing contributions to the educatlion of
young englneering students.

DIVISION OF ENGINEERING GRAPHICS
OF THE

AMERICAN SOCIETY

FOR
ENGINEERING EDUCATION

RESOLVED:

THAT, WITH THE PRESENTATION OF THIS AWARD, THE ENGINEERING GRAPHICS
DIVISION OB THE AMERICAN SOCIETY FOR ENGINEERING EDUCATION BY THIS
TQEEN ACKNOWLEDGES THE MANY DISTINGUISHED SERVICES RENDERED BY

THEODORE T. AAKHUS

THROUGH THE YEARS 103311963

THE SOCIETY EXPRESSES ITS DEEP APFRECIATION EQOR THOSE SERVICES,
AND THE GREAT PERSONAL PLEASTIRE OF THE INDIVIDUAL
MEMBERS IN HAVING HIS FRIENDSHIP.

PRESENTED. THIS EIGHTRENTH DAY OF TUNR IN THE
¥EAR OF OUR LORD NIMETEEN BUNDRELD SIXTY-THREE

the top of his class, And in 1926 he join-
ed the Faculty of Englneering as instructo
in engineering mechanics. He 1s now full

professor,

His 1ndustrial experlence includes work

in the Engineering Office of the ILincoln
Telegraph and Telephone Company; in the
Drafting and Design Department of the Neb-

raska Department of Roads, Bridge Divislon
Culvert Division, Right of Way Divislon,
Highway Planning Division, and Final Esti-
mate Division; and also in the Design and
Detail of Oxygen Production Plant in coop-
eration with Lincoln Steel Works. He is a
member of the Alpha Chapter of Sigma Tau,

The reclplent of the Award must have made
a clearly discernible contribution to teach-
ing in a recognlzed field of graphics in
several of the followling ways:
(A) Success as a teacher in inspiring
students to high achievement

(B} Improvement in the tools of teach- Engineers Club of Nebraska, Nebraska Engln
ing _eering Soclety, and he is a Registered Pro
(c) Improvement in teaching through fessional Engineer, No., 204, State of Neb-
such activitlies as development of raska.
other teachers, testing and guld- _
: ance - programs ' ' Throughout his career as a teacher Pro
(D) Scholarly contributions to the 1lit- fessor Aakhus has served as an influentia
erature and, most important, member of the academic-community on key
(E) Service to the Division of Engln- local and natlonal commlttees and has con

eering Graphics of ASEE,

Professor Aakhus rates high on all these.
counts. He has been a member of ASEE since
1933 and has been active in the Division ev-
er since. He has served the Division in
most of its offices right through the chalr-
manship. Typlcally, Professor Aakhus held
the editorship of The Journal of Englneering
Drawing for six years, two elected terms,
longer than anyone else ln history.

During World War I Professor Aakhus ser-
ved in the Navy.. After he recovered his
health he went to work as a lumberjack 1n
the Minnesota woods for two years. In 1922
he left his much loved North Woods to be-
come an engineering student at the Univer-
sity of Colorado. Applying his character-
istiec thoroughness, he was graduated near

28

tributed to the literature of engineering
graphics., But through all his service hi
one great concern and perhaps his greates
contribution has been his eagerness and
his abillity to teach and to counsel his
students. His basle teaching phlloesophy
has been to work with students individual
to draw out of them their best abllitiles.
As a result academic rank and honors rest
lightly on his shoulders, for henors are
eonstantly bestowed on him in the warmth,
affection, and respect of his students.
When students have been. graduated and the
return to the Nebraska Campus, the first
‘man they seek out 1s Prefessor Aakhus.

He has earned many tltles: lumberjack
engineer, counselor, author, editor, and

teacher, The title that Professor Aakhut

The Journal of Engineering Graphics



| NOMINATIONS FOR 1964

The Nominating Committee of the Division

Bl of Engineering Graphics of ASEE has selec-
ted the following slate of nominations for
the offices indicated for 1964-65:

" himself values most'hignly is the title of

teacher.

In honoring Professor Theodore T, Aakhusi
with the Division's
Award,

Distinguished Service
the Division honors itself,

Albert Jorgensen

E.M. Griswcld

Irwin Wladaver, Chair-
man of the Committee
on Special Awards

PAST WINNERS

1650
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

Frederic G. Higbee
Frederick E, Giesecke
George J. Hood

Carl L. Svensen
Randolph P, Hoelscher
Justus Rising

Ralph 8, Paffenbarger
.Frank-Heacock

H, Cecil Spencer

C. Elmer Rowe
Clifford H. Springer
1961 William E, Street
1962

1963

Jasper Gerardi

Theodore T. Aakhus

Fall Issue = 1963

Vice Chairman -
J.5, Dobrovolny -
Universlity of Illinois
R.C, Loving -
Illinois Institute of Technclogy

Secretary
ary F. Blade -
The Cooper Union
Frank M. Hrachovsky -
Illinois Institute of Technology

Director - Executive Committee (4 years,
to fill the unexpired term of A, J.
Philby, elected in 1663)

R.A, Kliphardt,
Northwestern University
R.R. Worsencroft,
University of Wisconsin

Director - Executive Committee (5 years)
M.W. Aimfeldt,
Iowa State University
C.C., Perryman, . .
Texas Technelogical College

Division Editor { ASEE Journal)

A.S. Palmerlee,
University of Kansas
S.M, Slaby,

Princaton University

Editor of Journal of Engineering Graphics

E.D. Black,

General Motors Institite
K.E. Botkin,

Purdue University

'Qontinusd on page 11




ANNUAL MIDWINTER MEETING AMERICAN SOCIETY FOR ENGINEERING EDUCATION

DIVISION OF ENGINEERING GRAPHICS

JANUARY 8-9-10, 1964

Engineering Graphicsg--An essential
discipline of the engineering pro-
fession

WEDNESDAY, JANUARY 8

Memortal Student Center
{MsC)

Leave College Station for Hous-
ton 8:00 a.m. Arrive Houston
10:30 a.m. for inspection trip of
the Dome Stadium., Dome Stadium-
f41 f£t, 10 in. dia. at top and
cooled with 6,000 tons of air con-
ditioning. Courtesy Wilson, Mor-
ris, Crane, and Anderson-Architects,
Trip arranged by Professor A.P.
McDonald, Rlce University,

Board the "Sam Houston" 2:00 p.m.
at the San Jacinto Monument for trip
up the Houston Ship Channel. Lim-
ited to 100 people,

Arrive back in College Station
6:00 P.M. :

REGISTRATION 4 to & p.m.
Serpentine Lounge

EXECUTIVE COMMITTEE DINNER
(For Executive Committee Members
and Invited Guests)
6:30 p.m, Rooms 2C & 2D
SOCIAL HOUR
For all members, wives and

guests, Refreshments.
Ballroom

7:00-10:00

THURSDAY, JANUARY 9

M3C
Morning

REGISTRATION
Serpentine Lounge

8:00-10:00

8:00-9: 45 OPEN HOUSE

30

MEMORIAL STUDENT CENTER
TEXAS A & M UNIVERSITY
COLLEGE STATION, TEXAS

Engineering Graphicse Department,
Engineering Bullding, Room 311.
Refreshments
Msc
Agssembly Room
OPENING REMARKS
W. E. Street
Texas A & M University
10:00-10:15 WELCOME ADDRESS

Dean Fred J. Benson, College of
Engineering, Texas A & M Unlversity

10:15-10:45
Presiding - B.L, Wellman, Worces-
ter Polytechnic Institute

"Some of the Engineering Problems
Encountered 1n Creating a City for
200,000 People." Del E, Webb
Corporation Representative.

10:45-11:15
"A Study of Engineering Graphics."
Ernest C. Schamehorn, West Vir-
ginia Institute of Technology.

11:15-11:30
"Solution to the Duplication of

the Cube." Clarence E. Hall,
Engineer, Day & Zimmermannm
Philadelphia, Pennsylvania.
11:45 PICTURE
Front Steps - M3C
12:15 LUNCHEON
Ballroom

Presiding - Robert H., Hammond,
Unlited States Military Academy

"Graphlcs as Viewed by a Consult-

ing Engineer.," ©Edsel J. Burkhart,
Spencer J. Buchanan and Associlates.

The Journal of Englneering Graphics



2:00-2:20

2:20-2:50

2:50-3:20

3:20~3:50

L:00-5:00

6:30

8:00-8:45

Afternoon

MSC
Assembly Room

Presiding - Hugh P. Ackert,
University of Notre Dame

"Automation in Graphics'.
B, F. K, Mullins, Texas A & M
University.

Computer Plotter Demonstration,
Joe Williams and Rodney B, Mur-
ray, Kemco, Incorporated.

"Simulate to Stimulate.”

Robert D. LaRue, Coloradc State

University.

"Place of Graphles in Computers,”

E. H. Brock, Computation and DPata

Reduction Division, NASA, Houston
COMMITTEE MEETINGS

Graphics Divislon Committee meet-

ings. Industrial Representatives
Committee Meetlng. Rooms to be
announced,

ANNUAL BANQUET
MSC

Presiding -~ B. L. Wellman,
Worcester Polytechnic Institute

"American Agriculture.”
Reagan Brown, Texas A & M

- Unlversity.

Entertainment - Singlng Cadets
Director: Bob Boone,
Ballroom

FRIDAY, JANUARY 10

MSC
Morning

SOCIAL HOUR
Roomg 2C & 2D

Fall Issue » 1963

H:45-9:30 Assembly Room

Presiding - Jerry S. Dobrovolny,
University of Illinois

"Drafting 1n Industry"
W. R. (Dede} Matthews,
Matthews & Assoclates -

Architects & Englneers,
Bryan, Texas
9:30-10: 30 PANEL DISCUSSION

"Graphics' Needs of Industry."
Assembly Room

Presiding - Ken E. Botkin,
Purdue University '

Moderator - K. E, Botkin,
Purdue University

Panelist

B. J. Whitworth, Hughes
Tool Co., Houston, Texas

B, J. Armstrong, Ling-Temco-
Vaught, Inc,, Dallas, Texas

10:36-11:50
AIRBRUSH METHODS & DEMONSTRATIONS

Assembly Room

L.G. Whitfield, Engineer's
Artist, Houston,

Eugene R. Tanner, Jr., Technical
Illustrator, Houston.

. ¥
Frank Nagle, Industrial Designer
and Illustrator, Houston.

DUTCH LUNCHECN
MSC

12:00-1:00
Presiding - B. L, Wellman,

Worcester Polytechnic Institute

Cafeteria and Dining Room

1:00-4:00
TOURS FOR INTERESTED PARTIES

LADIES PROGRAM TO BE ANNOUNCED
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LETTERS TO THE EDITOR

Dear Editor Blade:

I have read with increasing interest
the articles in "The Journal" econcerning
the emphasis of creativity and design in
engineering graphies courses and I heartily
agree with those whe advocate introducing
the freshmen engineering students to "open-
ended"” problems. A present objective of
mine is to convince the members of the
General Englneering Department at the Un-
iversity of Washington that emphasis on
deslign and development of ereative think-
ing should be officially incorporated into
our curriculum. I would appreciate any
comments, suggestlons, references, ete.,
from you concerning graphles currlculums
which do emphasize design. Thank you.

Sincerely,
WILLIAM S, CHALK
Asgistant Professor

Department of General
Englneering
Univ, of Washington

‘ic objects.

Dear Mary:

I expect you have survived the Phil-
adelphia meeting and are about ready to
start the fall semester with schoolwork.

I am wondering if you saw the report
as published in the Technical Survey World
Report for June 29, 1963, Volume 19, No.
26, page 453. The statement to which I
refer is as follows, "Do you know the
Meissner Engineers, Inc. went bankrupt
trying tTo computerize production of engin-
eering drawings and the firm was sold at
auction evoking a bid of only $26,0007?" .

Perhaps the technlcal devices for mak-
ing ortheographic drawings are not yet
sufficiently perfected. to guarantee suc-
cess. Therefore, perhaps we wlll still
have an oppertunity to offer instruction
in engineering graphics for several years
to come,

I thought you might like to know the
above information. :

Sincerely yours,
Ralph 7. Northrup .
. o Head of the Department’
"~ of Engineering graphics
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A Note on DG-4D

To the Editor of the JOURNAL:

Descriptive geometry of four dimensions,

" DG-4D, must be a fascinating subject.

Thecoretically, it doesn't exist; Pather
Monge defined descriptive geometry as a
method of representing three-dimensional
objects by palrs of two-dimensional graph-
_ This is what it comes down to.
Butt in the May issue you ask for recommen-
dations about possible publication of a
paper entitled, "Descriptive Geometry of
Four Dimensions," by Ernesto S. Lindgren.

You say that Professors Adams and Slaby
beth favor publication of Lindgren's paper.
Presumably they both understand what Lind-
gren has to say or at least a substantial
part of it. I haven't seen Lindgren's "DG-
4D;" even so, I hope you find a way to pub-
lish 1t, serlalized 1f necessary, precisely
because 1 don't understand what DG-4D can
possibly mean. .

On the other hand analytic geometry deals
readily with three-dimensional space; I can
see and find my way reasonably well through
X-, ¥-, and z-coordinates. With some addi-
tional agony I can accept an extension into

" four-dimensional space provided I don't have

to try to represent it by means of two-dim-
ensional objeects in the erudite but also
recondite manner of Professor Arvesen of
Norway. I can even accept the x-, y-, z-,
U-,..., n- coordlnates of Professor Steve
Coon's exXtenslon of analytic geometry into
space of n-dimensiocns; whether I do or do

 not understand 1t is irrelevant, except to

my psychiatrist,

, I'm strictly a two-dimensional man. I
can take two-dimenslional objects and add
them up to a three-dimensional object. I
can not take three two-dimensional objects
and add them up to a four-dimensional ob-
Ject. For me therefore, there is no DG-4D,
By definition descriptive geometry is for
the three-dimensional birds. Four-dimen-
sional descriptive geometry is for the other
birds. ' '

Cordially

Irwin Wladaver

Assoclate Professor of
- Engineering Graphics

NYU, Schoel of Engin-

eering and Science

The Journal of Engineering Graphics



'A Note on Educational Experimentation

To the Editor of the JOURNAL:

Professor Maurice E. Hamllton made cer-
taln unwarranted statements in his article,
"A New Approach to Teaching Graphics," in
the May, 1663, JOURNAL. It 1is clear to
me that Professor Hamilton had decided in
advance what conclusions ought to emerge
from his study. Now there's nothing wrong
with such a beglnning: in fact, 1f he had
not had strong convictions about the prob-
able outcome there would have been no 1in-
centive to attempt an experiment. But hils
assertion that certain conclusions could
actually be drawn from a situation which
"statistical methods...found to have been
charice" makes me doubt the seriousness and
credlbility of his procedures. I reallze
that subseguently he adopted a different
test and presumably a different set of
criteria, But what I don't understand is
why he didn't Junk all the results of his
first effort and why he didn't resist the
temptation to draw and state concluslons
for which he offered no evidence.

For example: in the middle of page 38
I read, "A frequency polygon showed that
the experimental group had improved 75%
over the control. group; but when statis-
tical methods were used to find if this
had any sighificance, it was found to have
been chance." To this I say that if stat-
istical analysis indicated chance, the
"Ymprovement” claim should be entirely sup-
pressed. There isn't the slightest reascen
to make a public statement about an exper-
iment unsupported by acceptable evidence.

Another example: On the same page the
last full paragraph reads, "So the results
of that semester's work had to be thrown
out, but valuable information was gathered
from 1t. It was found that lecture time
could be cut in half and that linework im-
provement was better than under the pre-
vious system of starting wlth graphical
construction. It was also found, but
could not be proved statistically, that
the visualization was greatly improved and
that less time could be usged for isometrics,
missing 1life, and missing view problems."

Now I ask you: if the "work had to be
thrown out," what valuable information
could be gathered from 1t, except perhaps
the certainty that the procedures followed .
were invalid? Surely there {5 no justifi-
cation for such unsupportable assertions.

Fall Issue » 1963

And I ask further: "If valuable informa-

tion was gathered from 1t," why throw it

out? Why not demonstrate in what way the
information was valuable?

In that same paragraph Professor Hamll-
ton claims that lecture time could be cut
in half and that linework lmprovement was
better than under the previcus system of
starting wlth graphical construction. He
didn't present a shred of evidence. And

he gees on to say that he alsc found, but
could not prove statistically, that the
visualizatlon was greatly improved. Thils
is a highly desirable goal tc which we're
all striving. Doesn't he have any support’
of any kind for such an important claim?

Cutting lecture time in half Is easy:
Just quit early. I'm sure my students

“would be delighted if I lectured only half

the usual time. They might even be better
off; surely they'd be happler. Does that
mean that I would have done a better teach-
ing Jjob? Could be! But I'd want some
proof before making a bold assertion. In-
tuition and hunches are all very well and
when we have nothing else to depend on we
have to use them. But let's not hide be-
hind them when we have available experimen-
tal procedures that rely on statistical
procedures.

Experimentation is easy to eriticlize,
and especially educaticnal experimentation.
Pertinent elements are dlfficult to iden-
tify and the relationships often obscure;
Proper tests are almost impossible to de-
vise and harder yet to validate. Sometimes
the best we can do 1ls to use our judgment,
hunches, 1ntuition, But if we accept the
premise that our results are golng to be
made to depend on statistical analysis, we
have no right to use other criterla when

statistical analysis falls to support the
conclugions we had hoped to establish.

Professor Hamiiton should be compliment-
ed for hies willingness to challenge long
established classroom procedures by com-
paring them wlth what he considered new or
different, The fact that hls first results
did not satisfy him is all to his credit,
for he revised everything he could in a
second attempt to prove his case with more
suitable data. And so while I find fault
with the first half of his article, I praise
him for hils effort 1n the second half to
come to grips with the tremendously impor-
tant problem of visualization of three dim-
ensions from two dimensional data, in an

33



acceptable statistical way. I may have
serious reservations about the validity of
the test he finally used, that is, whether
it really measures the kind of visualiza-
tion he's talking about. But on this score
I have no right to complain until I can
devise a better test.

There is one more point I cannot pass
over without comment, Professor Hamilton
titles his article, "A New Approach to Teach-
ing Graphies." By '"new" he means one that
would be different from the ope belng used

at most Institutions.” And by this he means
having his students do plecture drawing at
the very start of the course rather than
start with linework and graphlcal construc-
tions, and so on--the kind of stuff we did
twenty years age and, admittedly, scme of

us are still doing. But how many of us?

I assert that Professor Hamilton's approach
is not new. I can't prove thils assertion,
but just examine the problem books that have
been published during the past five or ten
years, Nearly all of them emphasize pictor-
ial drawing at the very beginning.

Does this mean that current practice,
whatever it may be, makes an experiment un-
necessary? On the contrary, it makes it
essential, I think, to try toc find out wheth-
er we're on the right track. I'm tired of
following the self-appointed style setters,
I'm willing to follow Dior and Schiappareliil
to see what the trends are. But then I
should want to get a little closer to the
individual problem for a first hand inves-

tigation.

Yours truly,
Irwin Wladaver

DESCRIPTIVE GEOMETRY IN EUROPE

Dear Mary:

So far,
trial firmg in France,
Belgium,
erlands and Italy.

Germany,

Yet to be visited are schools and firms In Denmark,
By the time we leave England on June 7 I hope to

I have vigited nine engineering schools and eleven indus-
Italy and Switzerland, and one firm in

the Neth-

have a pretty good plcture of engineering graphics education in West

Europe,
dustry.

In two countries,

Germany and Italy,

and also how engineering drawing is practiced and used in in-

engineering students get at

least a full year of engineering drawing and some students get more

than this. 1In Germany all students

tion in descriptive geometry and many get

get at least a semester of instruc-
two semesters. In Italy,

at the University of Naples, one year of "geometry" including elements

of descriptive geometry is mandatory.

Milan, descriptive gecometry as such

tain aspects are taught in the first
{taught by professors of architecture).
on visits to the University of Naples,

However, at the Polytecnico at

has been dropped, although cer-
ear of engineering drawing
These cbservatlons are based

Polytechnico; Milan, Techische

Hochschule at Aachen, and an engineering school at Duilsburg.

In Prance {one school at Poitiers and two in Paris) no courses in

engineering drawing or deseriptive geometry are taught,
gives an entrance exam in drawing and descriptive geometry,

One school
however,

French students entering such schools have had one more year of high
school than ours and most of them have had some industrial experience.

Therefore one might say that these schools,

start at the sophomore level,

34

with very small enrcllments,

The Journal of Englneering Graphlcs



There are engineering schools of different levels in Switzerland
(as well as in Germany). At the lower-level school drawing and des-
criptive geometry are taught 1in small amounts. At the higher-level
school, students are "expected" to know engineering drawing through
dimensioning, but not tolerancing.

411 this will be explained at greater length in a report which I
will write this summer and which should be printed next winter. I hope
to send at least one copy of this report to each school of engineering
in the Unlted States. I hope, also, to include 1in the report, prints
of various drawings which I have been collectling from such famous com-
panies as FIAT, Brown-Boverle and DeMag, and from some lesser-kKnowns.
The computer has not cccupied such a prominent part in industry or ed-
ucation in BEurope, yet. But this will probably change within the next
few years as EBEurope begins to feel the competition getting keener, and
as Furopean manufacturers become more active. IBM ig the leader at
the moment ‘

Cordially
Charies Baer

— —————=

PRCGRESS OF NATIONAL GRAPHICS STUDY
_———————

The national study of engineering graphics content conducted by
Ernest C. Schamehorn, Assoclate Professor of Engineering at West
Virginia Institute of Technology, hag been completed and is entering
a report-writing phase. The last questionnaire returns were recelved
in May, 1963. Four hundred and eighty-four usable questionnaires were
obtained from a total of 585 engineering educators and practiclng en-
zineers who were mailed questionnaires, for a return of 82.7%. Two
hundred and fifty of 292 engineering educators repiled for an 85.6%
return, while 234 of 293 practicing engineers completed thelir forms
‘for a percentage of 79.G%. Percentage returns by the various par-
ticipating groups are as follows:

LHGMEEANG ERUCATOPS

Engineering GTADILES s e v eeenesnrnensnerasssesss 9H.0F
Mechanical ENZlNeeriNg.....eeeeeeeessvsssessse90.2%
Electrical ENZiNeering...vuevereescessosssssss 08.9%
Civil ENEINeering. .oveeeroeessvssossracenessssa(0.8%
Chemical EngineeriNg.....coeeecessascsseassssasasf{D.9%

ﬁ?ﬂzﬁéikgz ENGinlers

Architectural & StTUCtUrEl. .evevresnaresnens.s03.3%
Manufacturing & Production. .ovevereeieeransess79.7%
Operations & MaiNEENANCE . v s v seencrsnsnansnnsess79.0%
Research & DevelOopPMENt . ...oeeeeeesassvsssessas 78,25

The data for each of these groups and certain combinations of the
groups have been tabulated, analyzed, and interpreted, in terms of the

degree of emphasis and the time required for the basic presentation of

the topics listed on the questionnalres. Papers will be written in the
next few months for presentation at the Mid-Winter and June meetlngs of
the Graphics Division. Each paper will deal with different portions of
the study.
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HIGHLIGHTS OF THE 1963 ANNUAL MEETING OF THE AMERICAN SOCIETY
FOR ENGINEEZRING EDUCATION AT THE UNIVERSITY OF PENNSYLVANIA,

1964 Texas Meeting described : Jiﬁ Blackman reports on Egyptlan
by Blll Street. Engineering Schools in the Unlv-
' ersity of Pa., Egyptilan Museum.

Distinguished Award Winner of the CONVERSATION LINEUP - L. to R.
Graphics Division - Ted Aakus, of Blackman, Wladaver, McDonald, Buck,
The University of Nebraska. ?, Coons, and Borecky.
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Presiding Presldent Mat McNeary
of University of Maine,

Corridor talk by Black, Mcdohéld,
Slaby and Reinhard.

Pennsylvania Dutch Dinner at Swarth-
more College,

Fall Issue » 1963

First Descriptive Geometry Award
winner Pat Borecky of University
of Toronto, and Committee Chalir-
man, Ivan Hill, Univ. of Illinois,.

Graphics Study Director Paul Reinhard.
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THE ENGINEERING FUNDAMENTALS COURSE

at the

UNITED STATES MILITARY ACADEMY

Lit. Coi. Rabert H. Hammond, Associate Professor

The plebe [freshman) first course in engineering at the United
States Military Academy is a departure from the normal course in
Engineering Graphics, The U, S, M, A, course is entitled Engineex-
ing Fundamentals and consists of instruction in measurements, com-
puters, and graphics, It epans two semesters and has a total of 90
two-hour lessons, A typical lesson consists of a lecture-conference
period followed by a practice work session (laboratory). While there
is no assigned homework, many cadets do outside work because of in-
terest in the material or because they find additional study necessary
to maintain proficiency. Before discussing the subject matter, cer-
tain organizational details unique to the local situation should be dis-
cussed,

QRGANIZATION

The approximately 2500 cadets who malke up the United States
Corps of Cadets are organized into a Brigade of two regiments, Each
regiment is further divided into 12 lettered companies of approximately
104 cadets each. About 35 cadets of each company are 4th Classmen
-{freshmen, or ''plebes" as they are called at the U, 5. M, A,}, The

remainder are upper-classmen.

All cadets take the Engineering Fundamentals conree during
their plebe year, attending by "half regiment" on alternate days.
The approximately 210 4th Class cadets from the first six com-
panies of the first regiﬁent attend during the period 0950 - 1150;
those from the remaining six companies of the first regiment attend
during the period 0745 ~ 0945, The same schedule is repeated the

following day for the second regiment.

For instructional purposes; each half regiment (or group of
210 cadets) is broken down into 14 a;cademi: sections of 15 cadets
per section. These sections are formed according to cadet ability
in the subject matter, as indicated by the numerical grade average,
The first cadet in the first section has the highest average in that
"half regiment'' while the last cadet in the 14th section has the low-
est average. Tests are given frequently and section assignments are
changed every four to six weeks so as to reflect the current grades,
This frequent re-sectioning has the decided advantage that each in-
structor knows the level of instruction that he must present to his
section. The first section instructor spends only 2 minimum amount

of time on the basic work of the day's lesson, and devotes the remain-

ing time to advanced work in the same area. On the other hand, the
instructor who has the last section emphasizes and repeats the basic
principles of the lesson and omits most advanced work, One last item
of interest; any cadet who bas not completely understood the day's
lesson, who feels the need of review, or who is deficient (failing}

may request extra instruction, This is giVEn daily by appointment
during the cadet's free time and lasts for one hour. Fxtra Instruc-

tion is conducted by all instructors in turn.

CCURSE OF INSTRUCTION

The measurements portion of the course, as shown in the Out-
line of natruction, consists of 28 lessons (31% of the total}, The
instruction covers linear and angular mezsuremenis, vérniers, the-
ory of errors, adjustment of errors, the meaning of significant fig-
ures, and the difference between precision and accuracy. This in-
struction is offered to provide a background knowledge to the cadet
for future courses at the U, 5. M, A, involving measurements or
statistical data, Surveying is used as a vehicle for this Instruction
because a basic understanding of surveying facilitates the understand-
ing of maps, which is essential for an officer in the armed forces,
In fact, the last work unit of this portion calls for the preparation of

a map from given survey data.

The computer portion of the course consists of 5 lessons (6%).
The cadets are first introduced to the general types of computers and

the types of problems for which computer programming is economical.

Following this they are taught how to pregram problems using the
West Point Basic Programming System. This is a simplified

form of machine langnage used in conjunction with a SADSAC (Sim-
plified Academic Design Single Address Computer} which is simu-
lated on a GE-225 computer. During this sequence of instruction,
10 problems are assigned, including multiple loop techniques, of
which the last few are run on the computer, It should be noted here
that these 5 lessons do not constitute the cadet’s entire exposure to
thé computer, Immediately following this instruction, the Depart-
ment of Mathematics starts requiring certain problems inlnumerical
analysis to be solved using the computer, Other departments, in turn,
do iikewise. In subsequent Semeste?s, the Computer Center offers
cadets a voluntary additional program of qualification training, and

the Departments of Mathematics and Electricity offer elective courses



in programming and in computer theory. The result is that cadets use

the computer during each of their four years at the U.S.M, A,

As shown in the. Qutline of Instruction, the computer instruction
ig introduced during the measurements portion of the course. This
is done for two reasons: 1} During the subsequent instruction, the
cadets can be asked to program traverse adjustments, coordinate
transformations, etc, for computer solution, and 2) In coordinating
the Engineering Fundamentals courses and the Mathematics courses,

this proved tc be the best time to present the material.

The graphics portion of the course contains 57 lessons (63%]).

The first unit of this porticn, Modern Graphical Techniques, which
covers use of drawing mstruments and geometric constructions, is
given during the measurements portion (see Outline of Instruction)
in ordex to prepare the cadets fox the task of drafting a map, The
remainder of the graphics portion actually consists of four different
courses, The Standard and Accelerated courses follow the same
outiine; however, the Accelerated course, given to the upper (high-
est in academic order of merit) sections, covers the standard ma-
terial in less than the assigned nmumber of lessons and uses the time

so gained to explore more advanced topics,

Starting simultaneousiy with the Standard and Accelerated Graph-
ics courses is the Advanced course. This course is limited to those
cadets who have successfully completed work in Engineering Drawing,
Engineering Graphics, and Descriptive Geometry at a college or tech-
nical school, {Each year from 80 to 100 such individuals enter the
U.S.M. A,} These cadets take a short, but very intense, review fol-
lowed by & comprehensive examination, Those who pass this exami-
nation continue with the Advanced course; while the balance rejoin the
Standard course. (Each year from 60 to 70 cadets are admitted to
the Advanced course.} Those who continue, study some advanced
descriptive geometry and then spend the remainder of the time on

graphic solutions (see outline),

The Augmented course, a§ shown, splits off from the Regular
course, Here, the upper half [approximately} of the class inaca-
demic order of merit is excused from the Written General Review
{final examination) and the Course Review. The lime so gained is

used for the introduction of graphical ealculus,

SPECIAL TOPICS

The topics listed in the Outline of Instruction are fairly standard

with the exception of Orthegraphic Projection, Basic Mechanical
Tlements, Graphic Aids, and Application Problems. These are

described below,

The work on Crthographic Projection differs from the standard
presentation only in that dimensioning, sectioning, and preferred
projections are taught concurrently with the introducticn of crtho-

graphic projection.

The unit of instruction entitled Basic Mechanical Elemenis was
designed to familiarize the cadets with the basic mechanical elements,
their appearance, function and graphical represenfation. Such a unit
has been found to be essential since at the U, 5. M. A,, as in most
other schools, freshmen arrive who do not know the meaning of such

mechanical terme as shoulder, chamfer, or sleeve, and do not under-

stand the function of mechanical devices such as screw threads, gears,

cams, ete, Also included in this unit is the instruction covering work-

ing sketches and drawings.

The work on Graphic Aids is a variation of the old standby, graphs
and dilagrams. However, here the emphasis is on the use of graphs
and diagrams to present information in military training and in brief-
ings. All officers of the armed forces, in cormmon with moest engineers
and other professional men, will frequently be presenting information
and data to others, or will be the recipients of information. This unit
of instruction teaches cadets how to present information accurately,
clearly, and simply, yet with dramatic impact, An intevesting feature
of this unit is = discussion-demonstration designed to alert the cadets
to the fact that statistical information can be selectively presented so
as to create a misleading impression. This is presented so that these
potential officers will not be prone to be lead astiray if data is presented

in this manner in the future,

In all units of instruction of the graphics courses, probiems are

designed to apply the principles taught to practical situations and
problems., However, the unit calied "Application Problems, "
which is presented to the Advanced course, deserves special men-
tion. The situations used are quite complex and require the use

of most of the information covered in the preceding units of work.
Ag an example: the cadets are given a curve of surface area versus
surface elevation for a reservoir and typical stream and flood flow
curves for the associated drainage area, They are told the surface

elevation of the water at the start of the problem, the data for the



flow over the weir, and the restrictions on the down- stream flow.
The cadets are then informed that a_,cez.:ta._in_ type flood is due to ar-
rive at a giv_c-‘.p t@e. Tke ca‘:i.ég_a_mus,t dé;ermi._ne: 1. Whether the
reservoir can held all the flood water, co'nsidez;ing the limitations
on the down-stream flow, 2. 'Th_e required r¢lease rate if lowering
of the wa.;‘.éx.-"level is..réquire_d, a;'ld.' 3. The time at ‘;vhich the down-
. s’trean"s. fléw wﬂl "e'xceé::.l:'fti‘he-ﬁ;nitation; i the water level is not
'lox;ve're-d.- At problem# in this unit ar.e.-c:):[- ﬁm type which present the
cadet an unfémiliajr-"sit\.x.a.tid;th;.t he must anaiyze, recogrnize, and
break info.compdr;e.nt;-“:};at ca.n ic;h éolkre:d by familiar graphical tech-

niques,

OUTLINE

SUBJECT

Introduction to Maps

 Basic Methods of Fartk Meas.

Introduction to Gomputers

Appiication of Principles of
Earth Measurements

Modern Graphical Techniques
Topographic Mapping (Draftiﬁg)

Written General Review I

Validating Refresher
Pictorial Techniques
Orthographic Projection
Descriptive Geometry
Vector Gaomet-ry

Basic Machanical Eiements

Graphic Aids {Training, Briefing)
Graphical Arithmetic & Algebra

Nomography
Empirical Equations.
Graphi.cal.Calculu'_s .
Cnuraé Review
‘Appiication Problems

Written General Review II

This then, in brief, ie the course in Engineering Fundamentals

at the U, 5. M. A, The oversall philosophy is to present material that

will e interesting and challenging te all levels of cadet aptitudes and
abilities; and at the same time present the engineering fundarmentals
prerequisite to subsequent studies at the U. S. M. A, , graduate study,
and careers as officers of the Armed Forces. 'i‘his ig accomplished
by offering different level courses and by freguent resectioning to
keep each cadet in company with his intellectual peers, Such a sys-
temn requires the use of data processing eguipment; however, since
most schools now have computer centers, the administrative burden

is not unrealistic,

OF INSTRUCTION

ATTENDANCES {(LXSSONS}
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Accelerated Augmented  Advanced
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THE AXGNOMETRIC REPRESENTATION OF N-DIMENSIONAL FIGURES

by

Ole P, Arvesen

Professor of Descriptive Geemetry
The Norwegian Institute of Technology

(Original paper translated and prepared for publication by
Prof. A, L. Bigelow and Prof., S, M, Slaby - Princeton University).

Let us consider the axonometric (or cylindrical) projection
of a figure Fn of n dimensions in a.spane Rn-l of
{n < 1) dimensiens. The new figure thus obtained, being
Fn—l’ can then be projected onto a space Rn—2' By

continuing this process, the resulti will be a projection

F2’ located on 2 plané.

This can be illustrated by use of the following expression:

Fr=F-%F5
X.p
where P denotes the vector radius at the point of an Rn
and P! the axonometric projection of P in the space of

prajection Rn-l' Y is the normal. to Ro_1r and we will

assume that Rn-l passes through the origin of the coordinates

of R . Vector F finally determines the direction of the

parallel prejectors.

We wish, in particular to develop the equations for the planar

representation of the figures in an Rg. Consider first:

— - ¥.P
F1 - P .3 83
4 5% .5 5
5°P5

where X5, ¥g» Zgo Ugy Vs ;nd fgs b5’ Ces d5, eg would be
the respective coordinates of a point of R5 and of the
vector 55. Faking the space of projection Vg = 0, the

coordinates of a point of the projection will be

- 5 . 5
Xy T Xg - o Ve Yq4 5 ¥5 - F Vs
5 5
[} d

Projecting in the three-dimensional space, u, =0, and

finally on the plane, 24 = 0; we Will get:
ageq 0
23%3 24049
a a,e a,cd
3 474 56D
Xy = Xg - — EZp F - Ve
2 5 Sg 5 cad, 5 c33485 5

(1) . by ©
' . Ea“'a b4C4%
3 454 b5c5d5

¥ Yo = =— Z. * u. - Vo

2 57T U8 EEHZ 5 033465 5

3. Numerical example: - The 5-dimensional cube has.32 apexes
(corners).

0000L . 25)¢

1) 00000 §) o0001C  17) 00011
2) 10000 10) 10010 18) 10001 . 26) 1601t
3} 01000 11) 01010 19) DLoOL  27) 01011
4) 11000 12) 11010 20) 1iool 28) 11011
5) 00100 13) 00110 21) 00101 .20} 00111
) 10100 14) 10110 22) 10101 - 30) 10ill
7Y ©1166  15) 01110 23} 01101  31) ~ 01111
8) 11100 16) 11110 24) 1x101 32) 11111
and here are the 80 edges:
1-2 2-4 3-4 4-8 586
1-3 2-6 a-7 4-12 5-7
1-5 2-10 3-11 4-20 5-18
1-9 2-18 3-18% 5-21
1-17
6-8 7-8 8-18 9-10 10-12
6-14 7-15 8-24 9-11 10-14
§-22 7-23 9-13  10-26
9-25
11-12  12-16 13-14 14-18 15-18
ti-15 & 1i2-28  i3-15  14-30  15-31
11-27 13-2¢
16-32 17-18  18-20 19-20 20-24
17-19  18-22  19-23 20-28
17-25  18-26  18-27
21-22  22-24 23-24 24-32  25-26
21-28 22-80 23-31 25-27
21-29 25-29
126-28  27-28  28B-32  29-30  30-32
| 26-30  27-31 28-31
31-32

By placing in particalar, in (1)
ag = by =1,

5
ag = 1, by = gy, €5 = 2, dg =1, eg=

we get the representation shown in Fig. 1.



(2)

%
7 28
i Zo
1l 2t 52
3
3 = 4 24
5 73y Ze
P : 3 ad 8
o Z3 3o
0
. 4 X
' Z 2
/3 J/;jﬁ;///4
5 [-3

Figure 1

We see that such a projection can be obtained exactly in A and/'being two parameters. By a suitabie choice of the
the case of a figure of § dimenmsions: the knowledge of the values of these parameters, we can get the definite plane (2)
axes and the scales along these axes is enough to construct - to pass through a given peint P(xd’ Yy Z4o u4)’ and if the
the figure in question. When large numbers of lines prejecting plane is cut by a projection plane (table) as

complicate the work and increase the possibility of making
errors the analytic or symbolic manipulations would seem te z, = 0, u, = 4,

be preferable.

we Will obtain these expressions as the coordinates of the
Iret us consider an example, where we use planes of projection projection of P

instead of lines of projection.

—3 13 B1 -1 Al 3
Given in an R, the three 3-dimensional spaces: * 1 By A L
A1 By Ay 1
¥y T e Yo T — s
. A A
pi = AiX4 + Biy4 + Ciz4 + Diu4 +1=0, (i=1,2,3,),
the common numerator A being represented by
and set:

,{Pl * Py =0, -1 &, By
A = A s, By

MP, + P, =0, MAs By



Introduce here the values 11_ aanﬂ

results that

z

Now since this is concerned with an axonomeiric projection, A

must be reduced to a constant number, and we can see that

this will result when at least two of the spaces

are parallel.

4y = kg, By

Then if we set

= 1B,

we obiain the following for the ccordinates

of the projection

talken from (2); it of P
€1 By Dy Bl’
. - 2 P, (P2 Bpt
2 4 a4 B1 4 IAl Bl‘ 4!
4 By Dy A By (8) ’Aﬁ Bz| Ag By
4" Ay By Do | wyt Ay By 1) 4y Gy ’A1 Dy
45 By Dy Ay By 1 v = Ap Cof | JA2Dap
2 4 Al Bl‘ 4 Al Bl 4
A2 B2 AE D2
P, =0 Humerical cxample. - In {(3), set
4,20, By =1, ¢ =-1, D =2;
CB = kcz, b, = sz H
A2 = B2 =1, CZ =2, D2 =1,
With these values the projection of the 4-dimensional cube
will be that shown by Fig, 2
%
’3 a4
2 o 15 V3
& i 2
&
7 X,
-
3 <

Figurec 2



I.1,

DESCRIPTIVE GEOMETRY OF FOUR DIMENSIONS

By C. Ernesto §. Lindgren
Copywrltten 1962

INTRODUGTION

The study of the high geomeiry has been stressed by several
authors, geometricians, mathematicians, and phyeicists, who indicate
applications in the principle of relativity, in problems of probability,

and ete.

In general, the geometry applied in each case has been of
a neneuclidian geometry or a synthetic study of the euclidian geometry

of four dimensions.

Every geometty, euclidian or noneuclidian, ¢an be built in
several different ways, without loesing or modifying the truth of the
relationships between the fundamental geometrical elements. This is

possible becayse the geometricfan has liberty in gelecting a method

ef study.

We are taking the responsibility in developing & study of

the geomekry of four dimensiors, using the method of the projections.

We shall describe firat ¢f all the mechanics of such an
operation, using the principle of duality, which provides a very

practical way for the understanding of the space of four dimensions,

THE SPACE Of FOUR DIMENSIONS
Conception by the Projective Geometry
For the gecmetry of three dimensions, it is pasgulaged:
a, Two points determine a line to which they belong.
b. Three points that do not belong to the same line datermine
a plane,

©. One point and one line that do not belong to each othex

determine a plane.

Applying the principle of duality, the following is obtaine@,
and postulated:
d. Two planes determine a line o which they helong.
e. Three planes that do not balong to the éame ling determine
a peint.
£. One plane and one ling that do not belong to each other

determine a point.

Other four true statements, considered as corollaries of the
six postulates are
8. If two peints of a line belong to a plane, the line belongs
to the plane,
h. Two lines that belong to the same point, élso belong to the

same plane,

Appiying the principle ef duality:
i. I two planes of a line belbng to'a peint, the line belongs
to the point,
j. Two Lines that Selong to the same plane,lalso belohg to

the same point.

The three geometrical elements, namely point, line, aqd
plane are, as we s¢e, related in these postulates in such a manner,
that- two or three of them, propexrly located, always determine a
different one., During all this process, the geometrical element whexe
the :ransformaéions take placé; is not mentionad an& there is no

postulate for its determination. In other words, the space, gecmetrical

- element where these transformations are possible, iz not considered

in the postulates, in the assumption that, being the whole, {zs councep-
tion is totally understood, by pos;ulaclng the relationships batween its

parts.

Taking the pnatulétes d, |, d and h for a close.examination,
and calling the puint! the space of zero dimensions, the line, the space
of one dimension, .the plane, the space of two dimensicns, and the
gecmetrical element Qhera they can coexist simultaneously, :he*sface of
three dimensidns, we.conclude by the obsefvations of the posfulates:

1. TIwo spaces, under certain conditions, always detetmine another space
with one moére dimemsion.
For example: two poiﬂts {iwo spaces of zero dimension) determine
a line (space of one dimension); twe lines (twp spaces of one
dimension)'that belong to the same point {condition), also belong

to the same plane (space of two dimensions).

2. The reciprocal of the conclusion is also true: two spaces of
same dimension, d;termine under ¢ertain conditions, a space With
one less dimension. .

For example: two planes (two spaces of two dimensions) determine
a line (space of one dimension) ro which they belong; twe lines
(two spaces of one dimension) that belong to the sasme plane

(condition) determine e point {space of zero dimension}.

3. IOnly peint and line are determinéd as the intersection of two

spaces with one more dimension.

4. Only two planes are not said to determine a space with one moxe

dimension. They aré saic to determine a'line, space that has one

less dimension.

Introducing the space .of three dimensiouns.as a new geometrical

element to deal with in the pestulate that says! '"two planes detetmine
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by plane, we obtain:
""EW0 SPACES (OF THREE DIMENSIONS) DETERMINE A PLANE

TO WHICH THEY BELONG."

To this statement applying the principle of duality we get

“TWO PLANES THAT BELONG 70 THE SAME LINE (CONDITION)

DETERMINE A SPACE (OF THREE DIMENSIONS)."

The consequences of this extension of the postulates -are:

1. Existemce of a space of four dimensions, for (wo spaces with the

same number of dimensions can only coexist in a space that has one

more dimensien than che spaces in consideratiom.

2. Existence of two planes that do not belong to the same line
(objective or of the Infinity). There is, the intersection of
twe planes is a pcinF. This condition occurs because when twe
spaces with the same number of dimensions do not beleng to a
space with one less dimgnsion, thelr intersection is a space
with two less dimensiors.

Example: two reverse lines {do not belong to the same peint),
do not Intersect at all, or the "intersection" is a space with

"minus ong" dimension (one dimension of the lipe minus two}.

3. Existence of spaces of cthree dimensions where point, line and plane

are related by the same postulates and theorems established in
geometry of three dimensions.

&, New postulates and theorems relating the four geometrical
elements in consideration in this space of four dimensiﬁns,
namely: peints, lines, planes, spaces. The new relatioms will
permit the realization of transformations that are no& possible
in the space of three dimensions.

For example: the intersection of two planes can be a point, as
indicated in item 2; a lide simultanecusly perpéndicular cu.twn
planes that are not parﬂllel;_four lines perpendicular te each
other and belenging to the same point; three planes perpendicular

to each cother and belonging t¢ the same line; and etc,

Conception by the Analytic Geometry
In order rc make observations that shall lead to the

conception of a space of four dimensicns, write the equations of the

three geometrical elements of the space of three dimensions, using the

cartesian representation:
1. Point: ax+ b = 0;
ax + by + ¢ =05

3: Plane: ax4+ by + cz+d=290.

Observations:
&, The number of varisbles in the equation of the geometrical
element {or space) that it rxepresents, 1s equal to the number

of dimensions of fhe Zpace, plus one.

B lhe"gEOmetricalmelamenbs;invulved“in the elerfminf reference
and the space being represented have the Eam; fumber of dimen-
sions.

. The number of genmetrical elements iu the sy;tem-&f refereﬂca
is equal to the number aé dimensions of the sﬁaéé béing':
represented, plus one. .This number of geame£§icai éleﬁen:s
in the system is the minimum required.

d. A system of referentce used for ths reéresentation of. a

geomatrical element, is situated in 2 space with one more

dimension than the geometrical element in question.

T1f we want to write the gartesian equation of a space of
three dimensions we shall use the observatiens above and conclude;
a. The equation of a space of three dimensions has four variables.

It is; ax+by+cz+dw+er~ 0,

b. The geometrical elements of the system of reference have three

dimensions, there is, they are spaces ¢f three dimensions.

]

There are four spaces of three dimensions in the system of
reference.

d. The system of reference is located in a space of four dimemsioms.

THE SYSTEM QF REFERENCE.PROJECTION ON A SPACE

The system of reference Ls the same .for both the analytic

geometry and for the descriptive geometry.

The method of the descriptive geometry of three dimensiocns
conegived b? éaspard Monge cunsisté:
a. to praject a point of the space on the planes of the system of
reference by meana of a cylindrical-ofthogunai projection;
b. to rotate the horizental plane about the ground lins, uatil it

coincides with the vertical plane.
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The System
of Reference

Ihe Epure

of a Point

The system_éf-referenée éhat we obtain with the conception of

the space of four dimensions”is-madafof four spaces of three dimensioms.

These spagas are perpendicular to each other.

According with the synthetié geometry of four dimensions;

Theorem: If. a line is pefpgndicdiéw to a space, any Space which

éontains (belbngs):ihe‘liﬁé is perpendicuiar'to the space.
Theotem; If.:hq spaces-é;; perpéndicular, any line in one perpendic-

ular to theif intefsecfiéd is perpendicular to the other,



and any line through a point of one perpendicular to the

other belongs encirely to the first.

Conclusions:

1. The four spaces of the system, three by three determine four lines,
perpendicular to each other and belonging te the same point;

2. The four lines, three by three, determine the four spaces perpendic-
ular to each other;

3. The four lines two by two determine six planes, three by three

belonging to the same line;
&, The line belonging to three planes is perpendicular to the fourth,

and perpendicular to the space that belengs to the plane, but does

not belong to the line

In this system of reference we can omit one of the spaces,
since the distance, of & point to it is represented in the line inter-

section of the other three.

Reduced the system to three spaces, call them 25 ) Ié .

;g . The three plahes intersection of the thrse spaces two by two
call jﬁ B ﬂ; s ﬂ;

Ia order to wmake this notation become conservative throughout
the work, establish that two planes determine the space with an index

that completes the series 1, 2, 3.

Then:

planes g, and 7T, determine the space 22; H
planes H aznd ﬂ} determine the space 25; f
planes g1, end A,  determine the space X,

The lntersection of the three spaces and that belongs to the

three planes, call the ground line.

Basically, the projection o0f a point from a center C on a
geometrical form F, is the intersection of the projecting line with the
form F. We shall project a point of the space of four dimensions on
each one of the spaces of the system of reference. 1In each case, the
projection is the intersection of the corresponding projecting line
with the space, Introducing an artifice, so that the projections will
be represented in a plane, we rotate twe spaces about the ground linme,
until they coincide with the third. We have now a situation similar to
the system of reference of the descriptive geometry of fhree dimensions.
The twoe projections on the rotated spaces will be situated with the

projection on the fixed space, on a perpendicular to one of the plangs

that determine this space. These two projections are new projected
on the other plane of the space. Rotating one of the planes until
it coincides with the other, we obtain a plane representation of the

prejections of a poimt of the space of four dimensioms. Since the

operation rotation about a line does not change the distance of a
point, beilng rotated, to the line, the distance of a point to a space,
which is the distance of the projection of the point to the ground

line, remaine unchangeable, at the end of the process.

All the projections made are from a peint of the infinicy in

a perpendicular direction to rhe space.

We say then, that the distanca, in the epure, from the
projection of a point to the ground line is the real distance from Che

point in the space of four dimensions to the space of projections.

To determine the projection of a point on 2 space we shall
establish the conditions of belonging between point, line, plane and
space. The conditions are:

a, A point belongs to a space L[ belongs to a line of the space}

b. A line belongs to a space if belongs to a plane of the space,
or if belongs to two points of the space;

€. a plane belongs to a space if belongs to two lines of the
space, or if belongs to a line and & point of the spacs, or if

belongs to three points of the space,

Consider a space E of projection, a center C of projections,

and a point A, to be projected on the space from the point C.

The projecting line is AC, To derermine the intersection
of AC with the space, which i3 the projection of the point, we have to
determine a plane of the space, that belongs to a line which contains
the projection, that we call "a". To the projecting line, which is in
the space of four dimensicns, belongs a infinite number of spaces, We
select one of them and find the intersection with the space E. The
result is a plane, that we call P. From the infinice cumber of planes
taat belong to AG, we select one, plane G, that intersects P along a
line MN. AC and MN belong to the same plane Q and are concurrent, in
a point, This point alsc belongs to the plane P, which in turn belengs
to the space E. Under these conditions, we have a point that belongs
to 2 line of a plane in the space E; 1is the projection‘”a” of the
ohiective point A, on the space E, from the center {. The space that
belongs to the projecting line is the projecting space; the plane Q is

the prejecting planc.

When projecting on three spaces of the system, we can use the

same projecting space to obtain the three projections of the point.

Tie question of comsidering the regions of the space of Four
dimensions, situated betwsen the spaces of projection, can be considered
immaterial, The method of the descriptive geometry has the objective of

representing cthe geometrical forms im a plane form. If we have the
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REPRESENTATION OF THE POLNT ’
A polat is represented in epure by its three projections on Boint in the Space 5_‘{ Polnt in the Space 22 Point in the Space Z:?

the three spaces of the system.

b. Point that belongs to one of the planes mw,, Wyor T

3
6A,
{ This point belongs to two spaces, for each is the intersection
a . .
T 3 of two spaces of projection. Two projections of the point are on
! the ground line. They are the projections on the spaces that determine
= i — ;
I I X, I the plane in gquestion.
|
4
A, ‘TD
4 F.
3
| T
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let us take the projections two by two and organize the — 0z 153 £, Te; i
: L5, T LI,x rE, F -
following group: 4q and Az; Az and Ay 4y and A3, LRt (el ] i £5, 0, z
€z
If we elimlnate one of the planes that determine with
. i . Point of the Plane 7'1', Point of the Plane T(z Point of the Plane .ng
another, one of the spaces of projection, the system of reference is
reduced to only one space. TFor example, if we eliminate the plane QTf . ¢. Point that belongs to the ground lime.
‘the only remaining space is ZJ determined by the planes m, and Ty
X This point has the three projections on the ground line,
Consequently, the system of reference is reduced to two planes of a

for it belongs to the three spaces.
space, there is, we operate with the deseriptive geometry of three

. AN
dimensions. The projections of the point are A and Aj, that are found = —
: 255,
on the planes 7:'2 and WS. If we eliminate ‘J’Y’= , the remaining
space is &, , determined by the planes 7T, and 7%, . The projectic d. Point that has two projections coinciding.

of polat arve A) snd A3, on the planes s, and ‘frt‘a. If we eliminate

In this case the point belongs o the geometrical loci of

the plane 7’(‘3 , the remaining space is &, , determined by the planes

3

points equidistant ‘to twb spaces of projection, which is the bisector
7'("| and fr‘z. The projections of the point are Ay and Az oun the

space of the hyper-dihedral angle which cells are the two spaces of
planes 7T, and T,
prejection. The face of the hypar-dihedral angle is the intersection

We conclude: if we have two points determining a line, of che two spaces.

operating with two projections only, and applying one of the metheds

of the descriptive peometry to obtain the real length of a segment, we

§H e IR 2%

will obtain the real lemgth of ‘the projectiom of the segment on the { I I
= | — = I - 4 0
space, Afcer this is done, working with this segment and the other x z‘v:[s } Iz 23 } rr i - =
< (e (it et}

| | ]

prajection of tha line, applying again the method of the descriptive J.H_, LI 7 J A
2 %3
geomeryy, we will have the real length of the segment of the space of
four dimensions. Point 'Equidistant Point Equidistant Point Equidistant
o gty
of I, § 2, of T, 7 of T, 47,

CSPECIAL POSITIONS OF THE POINT

X Cbszrvation about the points H, I, and J.
a, Point that belongs to a space of projection, -

Ip the study of the descriptive geometry of three dimensioms,

If the point belongs to a space, the distance to the space ts demonstrated that the projections of a plane fipure, the intersection

iz zero. Since in the epure this distance is represented by segment of the plans with the bisector plane of the second and fourth dihedral

limited between the projection on the space and the ground line, we angles (which is a line haviog in the epure the two projections

conciude that this projection is on the grouand line. coinciding), and the point of the infinity of the lines of recall



{perpendicular to the ground line) form a system of homelogy, that is
called an affinity because the center of homology is a polnt of the

infinity.

In the case of the descriptive gaomerty of four dimensions,
is possible to determine, in 2 generél space, a line that has two
projections ceoinciding., This lime, or better say, the colnciding
projections of the line, again is_the axis of homology, or affinity,
of the system of homelogy in the plane of a figure that belongs to this
line. Conseguently, there are three‘systems of homology, formed by
the prejections of the points, twe by twe as homologous points, the two
coineiding projections of the line of the plane as axis of homology,

and the point of the infiwnity of the line of recall, as the common

center of homology.

REPRESENTATION OF THE LINE

The condition of belonging between Lime and point, that could
be demonstrated with the help of the theorems of cthe synthetic geometry
of four dimensions is: "A peint belongs to a line if the projectious
of the point are found on the projections of the line, with the same
index pumber, there is, the projeccion of the point on the spaces z,
L, and &, on the projections of the line on L, Za and Z 4

respectively.”

In a line there are points that should be determined, permitting

the analysis of important facts about the position of the line in the
space of four dimemsions, in ralation to the spaces of projection.
Such points are; the intersection of the line with the spaces of
projection, the intersection of the line with the blsecrtor spaces,

and the intewsection of tha Line with the planes that determine the

The last point is obtained if the line satisfies

spaces of projectiom.

certain conditions.

1. Intersection of the line with the spaces of projection.
1f a point belongs to a apace of projection, the distance
af the point to that space is zero, and the projection 1s found on the

ground lLine.

2. Intersection of the iine with the planes that determine the spaces
of projection.
These points should satisfy two conditiong:
a4, Baslong to the line;

b. Belong to one of the planes.

From that, conclude:
A line intersects one of the planes JT,: W a»or Ay if
the projecticns of the line on the spaces that determine the plane in

consideration, are concurrent on the ground line.™

If the projection Ay is on the ground line, the point (A) is the
intersection of the line with the space z,.
If Ay is on the ground line, the point (A) is, also, the intersection
of the line with the space J,
The point {A) belongs to the spaces £, and Z, , and belongs to the
intersection of them, there is, to the plans ?Ts

Practical way to identify witich plane the line intersects:

"The line intersects the plape that has cthe same index number of the

prejection of the point that is not on the ground lipe.™

3. Points of the line that are equidistant te twe spaces of projec-

tien. Intersection with a bisector space.

In the epure of a line, we observe the existence of points
that have two projections coilnciding, The points (P), (@), and {R)

have this particularity, and are eguidistant to two spaces of

projection.

In the study of the point we did not mention the points
that have two prejectiens symmetriecal in relation to the ground line
If this condition exists, the point is alsc equidistant to two spaces
of projection. In the following epure, the points (M), (N), and (Q) are

determined by a graphical process, s¢ that they satisfy the condition of

having two projections symmetrical in relation to the ground line.
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c. LINE PARALLEL TO THE GROUND LINE,
The line is parallel to all spaces of projection, The three

projections of the lime are parallel to the ground line, All the

intersections of the line with the spaces of projection are coineiding
with the point of the infinity of the ground line, in the space of

four dimensions.

EEE, .

d. LINE THar INTERCEPTS A PLANE.

The conditions for the possibility of this interception ware

4, FEspecial positions of the 1ine in raelation to the spaces of [N already established.

projection.

a, LINE PARALLEL TO A SPACE

The projection of line on that space is parallel to the

ground lime, for the line does not intersect the space or, to be ”,

conservative with the definitions in the projective geometry, the
intersection of the line with the space is a point of the infinicy

of the space of four dimensions.
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Ny d S Line that intercepts Line that intercepts Line that intercepts
T —— S the plane 74, the plane J7Z, the plane 7y
E 7 — 4 2
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Line parallel to 2, Line parallel to LZ Lina parallel to 2'3

e. LINE THAT INYERCEPTS TWO PLANES.

b. LINE PERPEWDICULAR TO A SPACE In that case the line belongs to the space determined by the

The projection of a line (r} in this space is reduced te a two planes, The projection of the line on that space is found om the
point, which is the geometrical loci of the projecticms of all the ground line

points of the line on the space. The projections of the intersection

(V) between the line and the space are on the same line of recall and

respectively on the projections of same index of the line. We conclude

that the two other projections of the line are perpendicular to the

ground line and ceincide.



Line that belongs Line that belongs
to S to &,

Line that belongs
to Zp

f. LIME THAT INTERCEPTS THE THREE PLANES.

The line has one point in the ground line..

g. LINE THAT BELONWGS TO A PLANE,

The line in that case has one peint on the ground lime.

N

5z, M
Line that belongs Line that belongs Lina that belongs
to o Tg to 7y

. P, PL
MM,

k, LINE PARALLEL TQ TWC SPACES.

The projections of the linme on these two spaces are parallel

to the ground line.
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Line parallel to 23 Line parallel to7,
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Line parallel co JEE

i LINE PERPENDICULAR TO THE -GROUND LINE
The projections of this line are perpendicular to the ground

line.

The line should be characterized in the epure by the

projeciions of two points.

REPRESENTATION OF THE SPACE

The study of the space is presented befcre the study of t
plane, because the problems related with the last, are conditioned
the establishment of the conditions of belonging. The problems of
intersection between two planes, between line and plane etc. are

possible in the descriptive geometry of three dimensions because th

geometrical elements in question, belong to the same space., In the
study of the descriptive geometry of four dimensions, the problem i:

possible, if the geometrical elements belong to the same space.

Analyzing the problems related with two spaces, plane and
space, and plane and line, we c¢onclude that they are possible, beca
the geometrical elements belong to the same space of four dimensions
However, the following theoxrem leads to tha conclusicn that the
problems related with planes, are not always possibla: "one plane

has only one line belonging to a space that does not belong to the

plana."

Demonstration:
The plane is determined by twoe lines. If each line has tw
peints in the space considerad, they both beleong to it, so does the

p}ane that they determine. But &ince the theorem only establishes t



the plane has only one line in the space, the second line cannot belong

to the same space, for this contradicts the hypothesis of the theorem.

From this we conclude that a space ' intercepts each plane

i

current in the ground line, for being this line the intersection of ’ﬂ'h

G'TZ , and T, and not belonglog ko the space T , has in it only cone

point, that we call (F). This point (P) belemgs to the space ’T , to
the planes 47, , 7, 1,1-'a , and to the ground line. It is the inter=-
section of the three lines intersectioms of the space with the planes

11'1 , T, ']Ts . We call the three lines 'C" N Tz 5 rs . Two by

two they determine three planes. Each one of these planes belengs to

one space of projection. We cenclude that the three planes are the
intersections of the space P with the spaces of projeetion X,

Ea,and23.

Since it was postulated that two planes determine one space,
we shall demonstrate that the three planes in question, represent only

one space and not three.

T L,=Plane <
"E‘I’,_EPlane )
T_'Z'ESEPlane b

= B
Assume that: ol ¥ =Space T
¥ e

o« and ¥ belong to the line T
@ and Y belong to the line T,
=¢ and @ belong to the line T

From thiswe conclude:

f‘ belongs to 71’ and to T"because belongs to ot

Il belongs to T"' because belongs to y=]

'Ez belongs to 7" and to T"'because belongs to )6

r;bel:mgs o debecause belongs to ¥
The plane A belongs to 71’ , to 7’ ”, and to 7”
With similar considerations conclude that &< and ts also beleng to
the spaces 77’ .77, 7

- -t .
Consequently, 7"' =7 =7 = ’7" . There id only cone space.

1. Especial positions of the space im relation to.the spaces of

projection.

a. SPACE PARALLEL TO A SPACE OF PROJECTION.
The space is parallel to the twe planes that determine the

space of projection. In this case, the intersections of these planes

. ',1'[‘,_ , and ’,‘n‘.a , along one line only., These three linas are con-

with the space, are lines of the infinity of the space of four
dimensions. The intersection of the space with the third plane, is a

line parallel to the ground line.
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b. SPACE PARALLEL TO ONE CF THE PLANES J’T‘ 2y OB T,
The space does not intercept the planme to which is parallel.
This means that the space is also parallel to the two spaces of
praject'mn that determine the‘plane. The intersection w.i.th the two

other planes are twe lines parallel to the ground line.
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¢, SPACE PARALLEL TO THE GROUND LINE.
The intersezctions of the space with the spaces of projec-
tion are three planes parallel to the ground line. The intersactions
with the planes Ty s and 7T, are three lines, also parallel to

the ground line.
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d. SPACE PERPENDICULAR TO A SPACE OF PRDJECTIONn
The twe planes that determine the space of projection in
question, intercept the space along lines that belong to the same
peint on the ground line, The third plane, being perpendicular co
the other two, is also perpendicular to the space of projection that
they determine. However, this plane is not parallel to the space in
study and determines on it a line, that is perpendicular to the space

of projection. Such a line is perpendicular to the ground line.

e
o€
=

The ‘space N ois determined by the plane of )\I and ;\g,

and thée plane of Azand As.

The intersection is the plane of (AB) and (CD), obtained ag
follows:
(AB) is the intersection of the planes 'E} T:1 and A . kz'

{€D) is the intersection of the planes ’C?_ -Ea and )‘z ?&3.

These two lines are concurrent in the point (B); they deter-

nine a4 plane that belongs to both spaces,

3. Observations.

The conditions of parallelism and perpendicularism between

two spaces can be established in a similar manner, as is done in the

9{ f ,3*3
K,

Space perpendicular Space perpendicular Space perpendicular

to E, te E, te E}

2. Intersection of two spaces.
This problem is always possible, for both planes belong to

the same space of four dimensions,

The intersection is a plane. This plane is determined by two
lines, intersections of four planes, two of them belonging to one of the

spaces and two to the second space.

>

i

stu_d"y of the descriptive geometry of three dimensions,

The problem of the determination of the intersection of a
line and a space follows also similar steps as the determination of
the intersection of 2 line and 2 plane in descriptive geometry of Three
dimensions. It is a preblem always possible. However, the interseccion
of a line and a plane, in descriptive geometry of four dimensions, may

not be possible.

REPRESENTATTON OF THE PLANE

Two concurrent lines, in an objective point or inm a point of
the infinity, determine a plane.

When the two lines are concurrent in a point of the infinity,
there is, when they are parallel, the projections of the lines on thé
same space of projection are parallel, Such a particularity is easy
to demonstrate,

a. Plane of two lines, concurrent in an objective point.

A "
ey
[y 93
¥3

PAy T2
e

Intersaction of the spaces ’T’ and N,

The space J? is detsrmined by the plane of t' and tz:

and the plane of ra and .Ca -

b. FPlane of two lines, concurrent in a point of the infinity.

A plane belomging to a space 77 » dees not have more than ona
line in each space of projection. This was demonstrated previously,
For this reason, the lLines of the plane in each one of the thres spaces
of projection will determine In each one of the planes w, o T, and

Fd , oue point.

k)



Problem: determine the points of the plane of two concurrent limes im

each one of the planes 7T, , T7,, and T,

)

Selution;

Given:

S

5

a. Consider only the projections of the lines on X, and X, ;
determine the poiots that belong to I, and s

b, Consider only the projections of the lines on K, and X ;
determine the points that belong to X, and £, .

c. Consider only the projections of the lines on El and X', ;

determine the poinzs that belong to £, and £y

In the epure showing all three projections of each line, con-
sidering the line which projections are H} Hys V2 V%, V3 V% or Hg H%,'

we obtain the peint of the plane on JT for the two first projections

)
belong to the same point on the ground line.
. . 1 1 1 1 . .
Considexing Fy F, V3 V3, Vg Vp or Fy Fp, we obtain the point
of the plane on the plane ‘?'(‘z .
s 1 1 1 1
Considering Hy Ha, Fy Fp, Hy Hy or F; Fj, we obtain the point of

the plane on the plane ’.'T' .

Problem: demonstrate that two planes that do nof belong to the same
space, have only one point in common.

Solution: planes o< and  are given.

Each plane bélongs to different spaces, The intersection of
the spaces is a plane § , which is concurrent with the given planes,
for of and § beloni to the same space 77 and 8 and § belong to
the same space /N . The lines of intersection (AR) and(CD) belong
toe the plane, and for r.i'.ds reason they are concurrent in a point (8).
This point is the only ome that belongs to both planes o< and & ,
for the plane ¥ that belengs to it is the only one obtaired in this

process,

FProblem: demonstrate that a line and a plane that de not belong te |
the same space, do not have a point in common.

Solution: line "r" and plane ©% are given.

To determine the intersection of a line and a plane, we consider
a plane & that contains the line "r'"; determine the line intersecticn
of o< and ; the intersection of this line with "r" is the intersec-
tion of the line "r" with the plane ©< , In this case, however, the
plane ﬁ that belongs to "r', decermines with ©X one point, {A), This
point (A) belougs to a plane that contalns "t". To say that (A} belongs

to "r" is an absurd, for they would determine & line and nct a plane fg

METHODS OF THE DESCRIPTIVE GECMETRY

1. Change of spaces of projection.

When e change a space of projection, the two other spaces
being kept in a fixed position, the distance from a peint to these
two spaces remain constant. Alse, as a consequence, two of the planes
that determine the spaces of projection change of pesition, During
the change we should consider the projections of the point, two by
two, as being made on the planes 70, 7T, 7%, . One of these
projections remains the same after the process, and the change of one
space only, is characterized by a new ground line, one fixed projectien
of the point, and a new line of recall from the figed projectien. On
the line of recall, the distances to the spaces not changed are marked

from the new ground line.



l.a. Change of the space Z.

Alp Ay = Az Azl and Alp A1 = A0 Apl
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1.b. Change of the space X, . } \

Mg Ay T oApp Ay and A Ay = Apn Ay \
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l.c. Change of the space X, St \\\\\
A0 A =4&p Al and Alp A3 S Alp A31 remains fixed; the intersection of tha space with 77, is the same in =
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Problems:

a. Given a point, change one of the spaces of projection so that

the new system of reference; the projections with index 1 are the same;
on the new line of recall from thess projections, mark the distances

from the points to the spaces 22 and Z, .

the point will belong to one of the spaces. F Iz
(i

b, Change the spaces of projection so that 2 given point will belong

to one of the planes Wi . 7(1, o 77, .

c. Change one of the spaces of projection sc that che point will
have two projections symmetrical in relation to the ground lipe.

d. Change one of the spaces of projection so that a line wiil
belong to one of them

e. Change one of the spaces of projection so that a lime will have

two projections coinciding after the change.

For the change of space of projection for space we shall
consider the space determined.by the planes intersections with the

spaces of projection,

Given the space 77 , the change of the space Z | is made &s

follows:

- the pasition of the planes ¥, and 7V, change, but the plane 7€,

Froblems:

4. Given a space, make one change of space of projection so that
the space will be perpendicular to cne of the spaces of
projection of the new system of reference.

b. Given a space, make one change of space of projection so that
the space will be parallel to one of the spaces of projection
of the new system of reference.

<. Given a space, make change of spaces of projection so that the
space will be parallel to one of the planes that determine the

spaces of projection in the new system of referemce.



d. TDetermine the space that belongs to a given point and is
parallel to a given space,

Solution of problem "d".

and

Twe parallel spaces determine with the planes 7’1’1 R 1’(8

T, s lines parallel,

Call ‘7" the given space and (A) the given point.

Take a space DS parallel to one of the spaces of projection,
for example . Find the intersection of the spaces .O. and 7" Call

the plane interseccion & , determined by the lines (MN) and (MP).

By the point (A) draw a plane pargliel to &t . This plane is

determined by (AS) and (AR).

We wverify that Ap Ry 2nd A3 Rz will be concurrent on the
ground line, if there is proportionality between the distances from
the point (A) to & and to £, and the distances from the point (N)

for example, to the same spaces.

To cbtain such proportion, make two changes of spaces to

place the point (R) on one of the new planes, in the case the plane

AT
The first change, places the point (R) in the space Eg .

The change is of space Z, .

The second change, of space &, , places the point on the

space ¥, . The point has now the projectlons Rp and R3 on the grdund

line; belongs ta the plane f('r" .

In this situation, the point (R) is a point of the inter-

section of the space with the plane ’J'\":‘ . We ¢an determine the three

interseccions of the space /N with the three planes of the last

system of reference. Since there is ome line common to the systems, we

determine the intersectiens of the space with the planes ‘in s Ty and

A, of the second system, From this system we détermine the intersec-
tions of the space with the planes T Ay and T, 0f the original

system of reference.

The space that belongs to {A) and is parallel to the space

T

is then the space /N , represented by rhe lines N

Ao

., and 2

* 2

2. Rabattement.

The probiem of the rabattement of a plane, can be solved
by the same manner as is donme in the descriptive geometry of three
dimensions, The plane that belongs to a space, will rotate abour

the intersection of the space that belongs to it, with a plane parallel

to one of the planes 71‘1 5 7{1, ar ‘ﬂ'! , until both planes coincide.

If the space is given by the lines intersections with ™,
7\"2 , and 1\'; , a point of the space rotates about the intersection

with the plane on which the rabattement is being made.

The rabattement of the point is located on the perpendicular
drawn from the projection of same index, te the axis of rotation, The
problem is to find out the location of the point on the perpendicular.
This is determined by making a vectorial additiocn of the cocrdinates
of the point in relation to the polnc of the space that belongs to
the ground line. We will determine then, the distance from the point
in the space of four dimensions te the point on the ground line. After
the rabattement this distance remains the same., With center on the
point of the ground line and radius equal to the distance derermined,

cut the perpendicular in a peint that is the rabattement of the given

point,
._Ci
-EZ
A,
=T
O.oz. ! !A. _
tiE o

/ (®),

Problems:

a. Determine the true valus of the sides of the triangle deter-
mined by three points of a plane on each one of planes Wl y
7“2‘ , and 7‘-3 .

b. Determine the plane angle between the intersections of a space
with the planes 7T, , 7‘—2_ N ﬂ’s , and the dihedral angle between

the planes intersections of a space with the spaces g:‘ o

and 2:3 .



FIVE NEW AND TESTED TEACHING AIDS
FOR ENGINEERING DRAWING

BY CARL L. SVENSEN AND WILLIAM E, STREET

FOR USE WITH ANY TEXT OR NO TEXT

DRAFTING PROBLEM LAYOUTS

SERIES D, REVISED 1962

Work sheets covering Vertical and Inclined Lettering, Sketching, Use
of Instruments, Encgineering Geometry, Scales, Orthographic Projection,
Revolution, Auxiliary Projection, Sections and Ceonventions, Dimension-
ing, Isometric, Oblique, Developments, Intersections, Screw Threads

and Bolts, and Studies of Points, Lines, and Flanes.

100 Work Sheets, 85" x 11" $3.50

DRAFTING PROBLEM LAYOUTS

Work sheets covering Sketching, Use of Instruments, Engineering Geo~-
metry, Sclaes, Orthographic Projection, Revolution, Auxiliary Projec-
tion, Sectional Views, Dimensioning, Screw Threads and Bolts, Isomet-
ric, Obligque, Perspective, Developments, Intersections, Working Draw-

ings. SERIES C and LETTERING EXERCISES cover a Complete Course.

69 Work Sheets, 83" x 11" $2.50

LETTERING EXERCISES

A DIRECT METHOD -- NEW AND INTERESTING

Vertical and Inclined Lettering with eight sheets of extra problems.
LETTERING EXERCISES AND SERIES C cover a Complete Course.

20 Work Sheets 84"ex 11" $1.00

VERTICAL LETTERI NG EXERCISES

Vertical Letterlng with instructions
6 Work Sheets, 8%" x 11"

$0.50

INCLINED LETTERI NG EXERCISES

Inclined Lettering with instructions
6 Work Sheets, 8%" x 11"

$o.5o
WRITE FOR EXAMINATION COPY OR ORDER FROM
‘ . _ PREPARE YOUR OWN PROBLEM BOOK
W. E. STREET BY SELECTING YOUR DRAWINGS FROM
" ENGINEERING GRAPHICS DEPARTMENT THESE BOOKS IN QUANTITIES OF 50
TEXAS A & M UNIVERSITY OR MORE COPIES OF EACH LAYQUT.
COLLEGE STATION, TEXAS ALLOW 390 DAYS FOR ORDER.




: VEMCO i

Drafting Equipment of the Highest Quality

SYMBOL OF DEPENDABILITY, RELIABILITY
AND HONEST VALUE

., Made in the United States of America




GRAPHIC AIDS IN ENGINEERING COMPUTATION 1963 printing
by R. P. Hoelscher, J. N. Arnold, S. H. Pierce P“bhs_"hed 1952
: Price $5.175
This well-known text of 197 pages, 6" X 98", in hard covers, deals with align-
ment charts, empirical equations, the design of special slide rules, and the
use of the standard slide rule, Examples are numerous, and there are prob-
lems at the end of each chapter.

The seven chapters are: {1} Standard Slide Rules, {2} Empirical Equations
from Engineering Data, {3} Alignment Charts, {4) Graphical Calculus,

(5) Alignment Charts with Determinants, {6) Special Slide Rules, {7) Movable-
scale Nomographs.

Formerly available from McGraw-Hill; now a Balt hook.

SLIDE RULE PROBLEMS AND SOLUTIONS Published 1962,
by J. N. Arnold Price $1.75

44 lists of problems, on perforated pages, 8" X 8", aleng with 79 pages of
descriptions of slide rule cperations and numerical answers for the more
than 500 problems; operations are varied to fit a number of the popular
makes of loglog slide rules.

Designed for individual study, group self-instruction, or class use,
Principal problem groups are: Division and Multiplication, Simple Powers
and Roots, Trigonometry, Logarithms and Powers in General.

DESCRIPTIVE GEOMETRY PROBLEMS Published 1962,
by S. B. Elred, C. H. Zacher, H. F, Gerdom Price $3, 50

128 problem sheets, 8-1/2" X 11", on pgood quality paper, perforated and
bound Intc & hook.

Appropriate for an extensive course of 80~100 lab hours, Content includes:
basic orthographic projection, fundarnental spatial relationships of elements;
applications of descriptive geometry to degign and manufacture. There is
extensive coverage of intersections and developments, including ruled sur-
faces; also, axonometric and perspective projection are treated.

DESCRIPTIVE GEOMETRY WORK SHEETS Revised editicn, 1957,
by f. H. Parsch, 5. B. Elred, R. H. Hammond Price $3.00

56 problem sheets, 8-1/2" X 11", on good quality paper, perforated and
bound into a book.

Designed for a brief course of 35-40 lab hours. Covers basic spatial re-
lationships of peints, lines, and planes; includes typical problems on inter-
section of surfaces, Third angle projection.

WORKSHEETS FOR INTRODUCTORY GRAPHICS - FORM A Published 1958.
by J. N. Arnold, M. H. Bolds, 5. B. Elrod, J. H. Parsch, R. P. Thompson Price $4.00

One hundred sheets, mostly 8-1/2" X 11" with a few 11" X 17", on good
quality paper, perforated and bound inio a book.

Principal topics are: Lettering, Geometry, Multiview Drawing, Pictorial
Drawing, Intersections, Developments, Contoured Surfaces, Functional
Desgign; also a few gheets each on Vectors, Graphical Calculus, Empirical
Equations, Representation of Data and Eguations.

PROBLEMS IN ENGINEERING DRAWING - ABRIDGED Fourth edition, 1956,
by W. J. Luzadder, J. N. Arneld, F. H. Thempson Price $1,70

A brief set of 40 sheets, 8-1/2" X 11" page size, in an envelope,

Among the topics included: Lettering, Use of Ingtruments, Geometrical
Constructions, Freehand Sketching, Multiview Drawing, Auxiliary Views,
Sections, Detail Drawing,

Appropriate for a brief course, particularly for some groups of technical
ingtitute students who are not pointing toward drafting or design.

Examination copies of any of these are available upon request,

BALT PUBLISHERS
308 STATE STREET WEST LAFAYETTE, INDIANA.




Prentice-Hall Publications of Inferest
in the Field of Engineering Graphics

Product Design
and
Decision Theory

by Martin K. Starr, Columbia University—This new book presents the nature of
decision theory and how it can be utilized to improve product design decisions.
Various kinds of design situations are discussed, extensive details have been fore-
gone. Mathematical and logical methods are employed, but the reader needs
only a surface acquaintance with these subjects. However, an ample supply of
references has been included to direct the more advanced reader to further
study. April 1963, 120pp., Paperbound, Text Pr: $2.95

Basic
Graphics

by Warren J. Luradder, Purdue University—This popular text is designed to ful-
fill today's needs of engineering and technical education. It presents fundamentals
essential to graphical solutions and communications. And it discusses each basic
concept clearly and in detail, anticipating difficulties commonly encountered by
the studeat.

Basic Graphics contains material on multiview representation and conventional
practices. And its emphasis is on frechand drafting and pictorial sketching with
expanded coverage of descriptive geometry, engineering geometry, and graphical
calculus. 1962, 715pp., Text Pr: $9.75

Electronic
Drafting

by George Shiers, Sania Barbara City College—Here is a Book that introduces
the various kinds of drawings and drafting techniques used in the design and
construction of electronic equipment. It combines an unusually wide range of
material with a detailed emphasis on fundamental concepts and practical meth-
ods, This book contains over 400 original drawings and treats graphical symbols
on a comparative basis to acquaint the reader with their types, applications and
relevant designations. It explains, by means of a grid system, how to apply mod-
ular principles in the layout of schematic, block, and connection diagrams. 1962,
556pp., Text Pr: $9.75

infroduction
fo
Design

by Morris Asimow, University of California at Los Angeles—This book develops
an inclusive discipline of design. Categories of problems, typical of the design
process, are identified and related to analytical techniques which can resolve
them. Introduction to Design cites problems in making design decisions, allo-
cating available resources, estimating risks of design failure, optimizing deter-
ministic processes, optimizing stochastic processes, and predicting the behavior
of tentatively formulated systems. 1962, 125pp., paperbound Pr: §2.95

E.L1.T.
Review

by Virgil M. Faires, U.S. Naval Post-graduate School, and Joy O. Richardson,
California State Polytechnic College—A complete one-volume review of the main
technical subjects offered in an undergraduate engineering course. It gives a
concise survey of the most important wuseful physical concepts—~organized by
subject matter and presented in a lucid, easily comprehended manner. Coverage
is sufficiently detailed so no additional material is required, yet it is condensed
enough to permit rapid study, ELT, REVIEW offers material and actual prob-
lems that can be quickly reviewed and assimilated by engineers studying for
either engineer-in-training or professional examinations for state professional
engineering licenses. 1961, 261pp., Text Pr: §7.50

The Complete
Slide Rule Handbook:
Principles
and Applicalions

by J. N. Amnold, Purdue University—This authoritative handbook shows how to
make accurate, timesaving calculations with the slide rule. It provides a de-
tajiled explanation of every practical slide-rule operation from beginning di-
vision and multiplication procedures to advanced logarithmic and exponential
caleulations. With this handbook, the students will be able to identify appropri-
ate scales on all standard slide rules. All pertinent topics of the slide rule are
featured: Jog scales, commonly-used methods of locating the decimal point, sim-
ple powers and roots, and trigonometric functions and calculations. Applications
of the rule are concentrated on the engineering field wih reference to its uses
in other fields of study. A wealth of typical examples, problems, and illustrations
is included. 1954, 206pp., Paperbound, Pr: $3.75

for approval copies, write: Box 903

PRENTICE - HALL., INC., Englewood Cliffs, New Jersey




No. 2960--6 INCH
fILLUSTRATION HALF SIZE)

Drawing Instruments
Protractors

Rolling Parallel Rules
11 Pt. Spacing Dividers

Catalog on Reque};i Covering:

DRAFTING ROOM-PATTERN LOFT—LAYOUT TABLE

THEO. ALTENEDER & SONS

Makers of Fine Instruments Since 1850

1217 Spring Garden Sireet Philadelphia 23, Pa.

This instrument consists of eleven points so
adjusted that they divide their variable setting
into ten or less equal parts. It can also he used
inversely to give multiples up to ten and in
graphic solution of ratios. Adjustable distance
between points on the 6 Inch Instrument is min-
imum %e”, maximum %” and on the 12 Inch

minimum %", maximum 134",

Drafting Scales
5.5. Straightedges
$.5. T-Squares
$.9. Triangles

Circular and Linear Engraving

for the
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oard, then put on all boards—that’s the story with drafting
om coast to coast. Among the 50,000 draftsmen now using BORCO,
g letters: “highly pleased with performance”...“fills a long-felt need.”

urself how BORCO literally “swallows” markings. Lasts for years.
oth sides—one colored non-glare green, the other non-glare cream.
t and attach (with double-sided adhesive tape).

riginal. As with any other success{ul new idea, attempts have been
e BORCO. Be sure to ask your dealer for genuine BORCO.
toven for years, quality made with 6-layer construction instead of 3.

i

CHARVOZ-ROOS corp.|

50 Colfax Ave., Clifton, N. J.

A complete line for architects and draftsmen
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