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ABSTRACT 
The move of constraint-based 3-D modeling into the mainstream of engineering design and manu­
facturing has been coupled with an increase of publishing activity in 3-D modeling instructional 
texts. Unfortunately, there is a lack of a clear overarching framework for teachers to understand 
what are the common themes which tie all of these different modeling tools together. This paper uses 
Shneiderman's (1998) Object-Action Interface model, along with the engineering design process, as 
a framework for understanding software interface elements which are common across four popular 
3-D modeling software tools. The goal is to provide an educational framework from which instruc­
tional materials can be developed, independent of any one software tool, but which still address the 
fundamental functionalities of these new, powerful tools. 

Introduction 
Three dimensional modeling, especially 
constraint-based modeling, has broken into 
mainstream instruction in the past couple of 
years. In as much as book publishing is an 
indicator of instructional activity, in the past 
two years a number of reference and tutorial 
texts have been published about constraint-
based modeling systems such as Pro/ENGI­
NEER (Pro/E) and Mechanical Desktop. In 
the research arena, much of the interest to 
date has been the relationship of 3D instruc­
tion and visualization ability (c.f., Gorska, 
Sorby & Leopold, 1997; Leach & Matthews, 
1992; McWhorter & et al., 1990; Ross & 
Aukstakalnis, 1993; Shah, 1994; Sorby & 
Baartmans, 1994; Wiebe, 1993). Another 
important issue is a general knowledge of 
how 3D constraint-based modeling software 
functions. In addition to a general ability to 
visualize 3D form is the ability to transform 
that mental form into a usable electronic 
geometric database. Particularly useful is a 
higher level understanding of this class of 
software, transcending any one particular 
software package. Just as with visualization 
skills, these software skills can be taken into 

the professional sector and applied to what­
ever modeling software is being used. 

A model for instructional design 
The goal of this current line of research is to 
look at the best way to impart a robust, gen­
eral understanding of 3D constraint-based 
modeling. Related to this goal is facilitating 
the teaching of the specific software being 
used in an engineering/technical graphics 
class. Stepping back from simply looking at 
the computer interface, understanding how 
computer software will be used requires an 
understanding of the knowledge the user 
currently possesses and the tasks which they 
are attempting to complete using the com­
puter software. The tasks the user brings to 
the computer can be divided between 
'objects' and 'actions' (Figure 1). Objects 
may be pieces of information or physical 
entities representing how the task might be 
achieved if it were done exclusively apart 
from the computer. Actions represent how 
the objects will be manipulated. These 
objects and actions associated with the task 
have a parallel in the interface of the com­
puter software. In this case, the objects are 
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Figure 1 - Object-Action Interface model (after Shneiderman, 1998). 

visual entities such as buttons, menus, text, 
and cursors, which make up the interface. 
Objects on the interface can be manipulated 
through actions taken with input devices 
such as a mouse or keyboard. The objects 
and actions of the interface should serve as 
metaphors for the objects and actions of the 
actual task which need to be accomplished. 
The degree to which the mapping between 
the task and the interface can be successful­
ly bridged is a measure of how effectively 
the software can and is being used. The 
model that has been described is 
Shneiderman's Object-Action Interface 
(OAI) Model (Shneiderman, 1998). 

Taking 2-D CAD software as an example, 
the tasks to be performed have many paral­
lels with techniques executed with tradition­
al drafting instruments. Understanding how 
well students can transition from traditional 
drafting to 2-D CAD packages can be 
explained, in part, by how directly tech­
niques such as geometric construction and 
view layout can be translated to the com­
mands and visual representations provided 
by the CAD software. Unfortunately, stu­
dents learning 3-D modeling packages do 
not necessarily have real world experience in 
building 3-D models from wood, clay, plas­
tic, or metal. Even if they did, there is some 
question as to how well these model building 
tasks translate to the interface metaphors 
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used in modern 3-D modeling software. 
Is there then, any use in the OAI model in 
understanding the use of 3-D modeling soft­
ware? Another approach to understanding 
the object-action components of the 'tasks' 
students bring to the software is to think of 
the tasks as being more conceptually formed 
tasks rather than ones rooted exclusively in 
physical objects and actions. Rather than 
thinking in terms of using a real compass to 
strike an arc, a conceptual understanding of 
how a line (the object) can be swept out in a 
circular path (the action) by constraining it 
to be a fixed distance from a point. In this 
context, tasks that the students bring to the 
software (and their understanding of these 
tasks) will be based on the instructional 
materials presented by the teacher in addi­
tion to previous experiences. 

Related to the OAI model is a more general 
notion of the 'mental model' the user has of 
the software tool (Carroll & Olson, 1990; 
Kuhn & Egenhofer, 1991; Norman, 1987). 
One's mental model can be considered 
semantic knowledge about a system -
knowledge beyond the memorization of 
commands. Combined with syntactic knowl­
edge - specific knowledge of a software 
interface - a user is able to predict how the 
system will respond to command inputs. A 
user can also formulate strategies of how to 
approach problem-solving using a particular 



Autumn • 1999 

system. Successful use of metaphors and 
concepts in instruction which reinforce a 
correct mental model of the system will 
enhance a student's ability to grasp the intri­
cacies of the system (Norman, 1987; van der 
Veer&Wijk, 1990) 

In summary, the OAI model and the appli­
cation of mental models to human-comput­
er interaction predict that arming students 
with strategies for model building which 
closely parallel the interface of 3-D model­
ing software should enhance the students' 
abilities to use the software to complete 
modeling tasks. The question then is, can a 
generic set of instructional strategies be 
developed which support instruction on a 
wide variety of 3-D constraint-based model­
ing software? This paper will begin explor­
ing this issue by first looking at the feasibil­
ity of defining a set of generic objects and 
actions universally used in popular model­
ing software packages. From this under­
standing, instructional strategies can be 
developed which support the use and under­
standing of these interface elements. 

Understanding the design process 
The beginning point for developing a set of 
generic interface objects and actions is to 
understand the software's context in the 
mechanical design process (e.g., Wiebe, 
1997; Wiebe, Howe, Summey & Norton, 
1997). Implicit in this is an understanding 
that there are limitations as to how much of 
the design process is generic to most 
mechanical design environments and how 
much of this process is typically covered in 
engineering and technical curriculums. 
Looking at this process, most final products 
involve multiple discrete parts that must be 
coordinated in an assembly. It is also impor­
tant to recognize that there are activities, 
which do not directly relate to the design 
process but are important for the manage­
ment/use of the system. Examples of these 
auxiliary activities include: file manage­
ment, correction of mistakes, and changes in 
modeling strategies. 

At the broadest level, the mechanical 
design process can be thought of consisting 
of three phases (Bertoline, Wiebe, Miller & 
Mohler, 1997): 

• Ideation 
• Refinement 
• Implementation 

These phases happen both concurrently and 
cyclically towards a final design solution, 
and 3-D modeling software plays a role in 
all three phases. 

In the ideation phase, design requirements 
are embodied in potential geometric forms 
and material specifications. In some cases, 
the design is a derivation of an existing 
design that may already exist as a comput­
er model. In other cases, the design is cre­
ated from scratch. The geometric form, 
which represents the design goals, can be 
decomposed into individual or groups of 
features. It is these features, representing 
the 'functionality' of the design, which need 
to be embodied in individual parts and 
assemblies. Here we can think of function­
ality as representing not only the design's 
function as a finished product, but also how 
each feature might map to the functional 
processes applied by the machines used to 
manufacture the part(s). There is also a 
need for geometric relationships to be 
established within and between the features 
in order to bring them together to become a 
whole design. These geometric relation­
ships, along with algebraic relations, are 
meant to embody the design intent of the 
model. 

Successful creation of the model requires 
the designer to translate the geometric fea­
tures of the final, physical model into geo­
metric features that can be created in the 
modeling software. Though the final, virtu­
al computer model of the design may look 
and behave much like the proposed physi­
cal design, its construction probably differs 
from how the physical design is fabricated. 
It follows that the strategy developed for 
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modeling the design depends on the user's 
semantic knowledge of what tools are avail­
able in the modeling software for creating 
and manipulating geometry. In terms of the 
OAI model, this strategy marks a critical 
mapping of the user's task (build a virtual 
model of this design) onto the software inter­
face (use these commands in this sequence 
to build the model). Since the user is using 
off-the-shelf software, not designing it, the 
interest is less in proposing new interface 
elements as it is in how best to let the 
user/student know what is available and how 
best the tool can be used. 

In the refinement stage, the modeling strate­
gy developed in the ideation stage is applied 
to the actual construction of the model. The 
transition now has to be made from general 
semantic knowledge of software capability 
to specific syntactic knowledge of software 
commands and interface elements. Through 
a series of actions, geometric features are 
created and related to other features, both 
within and between parts in an assembly. 
This process entails both bottom up and top 
down strategies. In the former, individual 
parts are modeled from features and brought 
together into assemblies. In the latter, an 
overall assembly strategy is defined and 
parts modeled and assembled to meet this 
design. Through iterative analysis, decisions 
are made as to how the model should be 
modified to meet specific design goals. 
These analyses range from informal meth­
ods such as visual inspection of the fit of 
parts in an assembly to more rigorous meth­
ods such as finite elemental analysis. 
Changes to the model are also made in the 
way the geometry behaves to modifications 
in size and location of features. If it is deter­
mined that the design intent has not been 
properly embedded in the relationship of 
features, then these alterations of underlying 
relationships are made at this time. 

In the implementation stage, the geometric 
database, representing the design, is trans­
formed in ways that help support the manu­

facture, sale, and support of the product. 
These transformations might include the cre­
ation of traditional working drawings from 
the model or the creation of CNC code for 
machining molds. Similarly, technical illus­
trations can be created from projections of 
the model for use in brochures or in service 
manuals. 

Of most interest in this paper is the activity 
taking place during the ideation and refine­
ment stages. More specifically, planning and 
then creation of individual part models. This 
decision is not meant to diminish the impor­
tance of the other ways in which the model­
er is used in the mechanical design process. 
Rather, part modeling represents what is 
probably the most common use of modeling 
software in the academic setting (c.f., Barr & 
Juricic, 1992; Howell, 1995; Clark & Scales, 
1998). With that said, a students' under­
standing of the part modeling process will 
have considerable impact on their applica­
tion of the modeling software in other areas 
of the design process. For example, the ini­
tial modeling strategy developed in the 
ideation phase will determine how the model 
is manipulated during iterative analysis. 

Defining generic interface objects 
and actions 
A deeper understanding of the common 
interface objects and the actions taken with 
them - as defined by the most popular con­
straint-based modeling packages - will pro­
vide a means for helping students develop 
effective model planning and construction 
techniques. It is worth noting that an explo­
ration of generic modeling tasks has previ­
ously be done at a higher level and with an 
older generation of modeling software by a 
number of researchers (c.f, Barr & Juricic, 
1992; Bertoline, Wiebe, Miller & Mohler, 
1997; Howell, 1995). The goal here is to 
both use the most current generation of soft­
ware available and to approach the defini­
tion of the tasks in a more systematic and 
detailed manner. The OAI model gives flex­
ibility to the task definition by recognizing 
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the hierarchical nature of most tasks and the 
similarly hierarchical nature of many soft­
ware interface elements. There are, however, 
practical limits regarding the extent to which 
the full depth of the hierarchy can be 
addressed in this paper. 

Initially, a checklist of generic objects and 
actions represented in modeling interfaces 
was developed based on personal experience 
and a selection of software-specific texts 
currently available: 

• Pro/ENGINEER (Bolluyt, 1998; Toogood, 
1998; Utz, Cox & Steffen, 1997) 

• Mechanical Desktop (Howell, 1998) 

This checklist was used while building a 
simple assembly (Figure 2) with a range of 
modeling packages: 

• Mechanical Desktop 
• Pro/ENGINEER 
• SolidEdge 
• SolidWorks 

The next step was to evaluate how these 
software packages varied in their implemen­
tation of the initially defined interface 
objects and actions. Questions were asked, 
such as: 

• Are objects visually or metaphorically 
represented differently between pack­
ages? 

• Are actions missing (e.g., automated by 
the software) or organized differently 
between packages? 

From the initial checklist, a new set of com­
mon interface object/action elements were 
developed which apply to all of these soft­
ware packages and represent real-world 
application of the software. 

Ideation - Modeling Strategy 
As stated previously, the model building 
strategy should ideally be conceived during 
the ideation stage and prior to the actual con­
struction of the model. More so than work­
ing with 2-D CAD systems, careful planning 
is central to the construction of all but the 
simplest parts in a 3-D constraint-based 
modeler. Planning requires knowledge of the 
basic methods used by the modeler to gener­
ate and constrain feature geometry. For most 
modelers, the primary method of creating 
feature geometry is to (see Figure 3): 

• Define a sketch plane in 3-D space 
• Sketch a 2-D profile on the sketch plane 
• Dimension/constrain the profile to other 

Figure 2 - Test assembly. 
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Figure 3 - Generalized sweep operation 
(SolidEdge). 

construction or part geometry 
• Define how the profile is swept away 

from the sketch plane to define a 3-D 
solid form 

• Define the Boolean relation to the exist­
ing part geometry 

Strategies that might be considered by the 
user include: 

• Can/should multiple features be con­
tained within a single sweep operation? 

• Can/should a single feature be defined 
by multiple sweep operations? 

• What is the appropriate sequence for the 
sweeping operations? For example, 
should all of the positive operations 
adding material be done first before sub-
tractive features? 

• Is there feature geometry that can be 
reused through mirroring or copying 
operations? 

• Are there lines of symmetry that can be 
aligned along construction (datum) 
planes? 

All of the above strategies are largely con­
fined within a part. As part of a top-down 
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design process, one may also be con­
cerned with how the part features and con­
struction geometry will interact with other 
parts in an assembly. For example, one 
may want to define features about con­
struction planes that can be aligned 
between parts. Similarly, one may also 
want to try to have as many sweeps as pos­
sible mimic the actual machining opera­
tions being used to manufacture the part. 

Through an iterative cycle of progressive­
ly more difficult lab exercises, students 
can explore the capabilities of these gener­
alized sweeping operations and develop 
metaknowledge about the software capa­
bilities. This knowledge can then be used 
to deconstruct existing geometric repre­
sentations of parts into a series of sweep­
ing operations. It is not unreasonable to 
expect students to sketch their plan of 
action on grid paper prior to actual execu­

tion of the model on the modeling system. 

Refinement 
Profile sketch process 
With a basic strategy in place, the modeling 
being done in the refinement stage can com­
mence. Since all geometry must be anchored 
relative to some coordinate system, some 
decision has to be made as to how this will 
be achieved. The approach is determined by 
a combination of system functionality and 
strategies determined in the ideation stage. 
A common approach is to define three mutu­
ally perpendicular construction (datum) 
planes intersecting at a global coordinate 
system origin (as seen in Figure 4). For 
modelers such as Pro/E, SolidWorks, and 
SolidEdge, these planes can be created by 
default when a new part is created. 

The first sweep operation creates what can 
be considered the 'base feature' of the part. 
The first step is to choose one of the con­
struction planes in order to define an orien­
tation and location of the profile used to cre­
ate the first feature. Once a plane is chosen, 
an X-Y coordinate system is oriented on the 
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Figure 4 - Three mutually perpendicular construction planes used to define the initial 
geometry of a part (SolidWorks). 

plane in a number of ways: 1) by systemati­
cally rotating/flipping a set of coordinate 
axes (Mechanical Desktop), 2) based on an 
established local coordinate system on the 
plane (SolidEdge), or 3) choosing a mutual­
ly perpendicular plane and indicating its X-
Y orientation (Pro/E). Because it is the first 
feature created in the modeler, it is not for­
mally a Boolean operation and therefore 
simply adds geometry to the void. This fea­
ture is often used as a basis for orienting and 
locating new features. 

A key technique needed in using modelers is 
the sketching of the 2-D profile used in all 

sweeping operations. Though the profile 
definition can be automated for simple 
geometries (e.g., a circle for creating a swept 
cylinder), the user has to sketch and create 
constraints for most profiles. After a sketch 
plane is defined, 2-D drawing tools are used 
to create a profile. These tools consist of 
both creation tools, such as line and arc 
tools, and editing tools, such as trim/extend 
and copy. The sketching takes place in either 
a pictorial or orthogonal view. Some systems 
default to an orthogonal view (e.g., Pro/E) 
while others hold the existing, usually picto­
rial, view (e.g., SolidWorks). The profile 
sketch consists of as little as a single'line or 
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as complex as multiple closed loops of 
straight edges, circular curves, and spline 
curves (Figure 5). The requirements of the 
profile depend on the modeler one uses. 
Some require single closed loops while oth­
ers allow open loops or multiple loops. 
Typically, loops cannot overlap and, if there 
is more than one loop, none can be open. 

The loop that is drawn, combined with the 
sweep path, defines the topology of the 
eventual solid feature. The geometry of the 

solid feature is defined through a combina­
tion of explicit and implicit geometric con­
straints. Within the profile, implicit con­
straints are relations of geometric elements 
to each other. Examples include: 

• Parallelism • Similar size/length 
• Perpendicularity • Symmetry 
• Collinearity • Closure 

How implicit constraints are implemented 
depends on the modeler. With most model­
ers, there is a set (or customizable) range of 
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Figure 5 - Example profile sketch interfaces. 
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Parameter 

Boolean operation to apply 

Distance of the sweep 

What type of sweep path 

Direction of the sweep 

Notes 

Union, Subtraction, or Intersection 

Can be set as a scalar unit or defined rela 
tive to other geometry (e.g., through next 
surface) 

Linear, circular, a defined curve, or a curve 
connecting a series of profiles 

Linear or circular sweeps can come one 
direction or from both sides of a profile 

Table 1 - sweeping parameters. 

size or orientation variation in which a pro­
file element will be considered: the same 
size as another element, horizontal, connect­
ed end to end with another element, etc. If 
the element is within range (e.g., within 5 
degrees of vertical), the appropriate con­
straint is applied. With some modelers, this 
application of constraints happens 'on-the-
fly', dynamically cleaning up the sketch as 
one draws. With other modelers, the user fin­
ishes the sketch and then instructs the mod­
eler to apply appropriate constraints. Most 
modelers will provide visible icons indicat­
ing which implicit constraints were applied 
and with what other elements (see Figure 5). 

Explicit constraints are typically the size and 
location of geometric elements relative to 
other elements in the profile or to existing 
geometry. How these explicit constraints are 
established depends on the modeler. In 
some, such as Pro/E, visible size and loca­
tion dimensions are placed to fully define (in 
combination with the implicit constraints) 
the geometry. In other modelers, size and 
location are determined exclusively by the 
act of sketching the profile geometry — no 
other dimensioning is needed. One can, 
however, add dimensions to provide for con­
trol of the geometry. This difference is often 
used as the defining element between para­
metric and variational constraint-based mod­
elers. 

Sweeping operations 
The completed profile is combined with 
sweeping parameters to create the solid fea­
ture. The common sweeping parameters are 
outlined in Table 1. 

Where and how these parameters are defined 
depends on the modeler (Figure 6). In some 
cases, parameters are defined before the pro­
file sketching (the Boolean operation fre­
quently is). In other cases, all of the parame­
ters can be defined after the profile sketch 
has been created (e.g., SolidWorks). It is also 
worth noting that the specific language used 
to define the parameters varies from package 
to package. For example, none of the pack­
ages refer to the Boolean operation by its 
formal name. Instead, the Booleans are 
packaged in 'feature-based' commands such 
as protrusion, cut, and hole. With some mod­
elers, the feature defines both the Boolean 
and other sweeping parameters. For exam­
ple, Pro/E uses the Shaft feature to define a 
Boolean Union created with a revolved 
sweep. 

There are, of course, exceptions to this gen­
eralized sweep description of feature cre­
ation. In some cases, parameter definition is 
automated: hole features may always use a 
linear sweep. In other cases, the feature def­
inition bears essentially no resemblance to 
profile sweeping (e.g., Chamfer and Round 
feature commands typically only require the 
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Figure 6 - Generalized sweep interface examples. 

user to select edges on the model to operate 
on and then specify dimensional con­
straints). 

Construction geometry creation 
Construction geometry is generally defined 
as geometry used in support of the definition 
of the solid model geometry. Construction 
geometry exists in the model database but 
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does not explicitly represent 'visible' compo­
nents of the model. This geometry is typical­
ly created as geometry in 2-D space used in 
support of profile sketching or as geometry 
in 3-D space used in support of profile 
sweeping, feature copying, or other feature 
operations. The most common 2-D geometry 
created in support of profile construction is 
center lines used to indicate symmetry. 



Autumn • 1999 

Geometry 

0-D Point 

1-DLine 

2-D Plane 

3-D Cylinder 

Example Definition 

Intersection of a construction. 
axis with a construction plane 

Intersection of two construction 
planes 

Parallel with a construction plane 
and tangent to a curved face 

Collinear with a construction 
axis at a set radius 

Example Use 

Define the limiting extent of a 
linear sweep as a point along 
a construction axis 

Define an axis of revolution 
for a revolved sweep 

Define a sketching plane for 
a profile 

Define a series of curves 
(via intersections with planes) 
for radial patterning 

Table 2 - Examples of construction geometry in 3-D space, how they might be defined, 
and how they might be used. 

Two-dimensional center lines can also be 
used either in the sketch plane or 3-D space 
to define an axis of revolution for revolved 
sweeps. Definition of geometry in 3-D 
space, in particular, demands a basic knowl­
edge of descriptive geometry and how exist­
ing geometry can be used to define new 
geometry. Table 2 gives examples of con­
struction geometry. 

Duplication of features 
Once a feature is created, it can be propagat­
ed in a number of ways. Most systems sup­
port some type of patterning. Linear pattern­
ing can be defined as a 1-D or 2-D array of 
copies of a feature. Both the number of 
copies in each orthogonal dimension and the 
spacing between copies needs to be defined. 
With a radial pattern, an axis of rotation is 
defined, along with a radius, the number of 
copies, and the angular displacement 
between copies (either as an angle or distri­
bution about 360 degrees). These patterns 
are not unlike patterned arrays in 2-D CAD 
systems, except they can be defined on any 
3-D plane in space and are used to propagate 
3-D features. In addition to patterning, most 
systems also support creating a singular 
copy, either mirrored about a plane of sym­

metry or translated some offset from the 
original. With all types of duplications, vary­
ing levels of dependencies can be estab­
lished between the original and the copies. 
These dependencies often include indepen­
dence or dependence of the copy to the orig­
inal's sweep and profile parameters. For 
example, dependency can be established 
such that a change in the original hole's 
diameter induces a similar diameter change 
in all of the copies. 

Redefinition of the model 
Using various interface mechanisms, all of 
the modelers allow for extensive redefinition 
of features. The modelers provide fairly 
direct mechanisms for modification of data 
values assigned to constraint dimensions. 
These changes are typically applied to pro­
vide for fairly localized changes to individ­
ual features, but can also involve topological 
change throughout the model. Various error-
checking mechanisms warn of the creation 
of illegal geometry, but usually not before 
constraint values are modified and the model 
attempts the reconfiguration. With all of the 
modelers, constraint values can be indirectly 
modified by linking their values to the val­
ues of other constraints (Figure 7). Using 
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Figure 7 - A user defined relational constraint (SolidWorks). 

algebraic equations and dimensional con­
straints as variables, relationships are 
defined between constraints. Typically there 
is a hierarchy where only a single constraint 
variable is allowed on the left hand side of 
the equation and the constraint variable(s) 
on the right would then 'drive' the left side 
constraint. In Figure 7, Dimension 1 (Dl) of 
the feature Base-Extrude drives Dimension 
1 of (profile) Sketch 1. 

In addition to modifying dimensional con­
straint values, the parameters defining the 
sweep or the geometry of the sweep profile 
can also be changed. Typically, a redefini­
tion command allows one to choose the fea­
ture to redefine and then takes the user back 
through dialogues/menus that were used to 
define the feature in the first place. Again, 
error checking is used to assure the redefined 
feature does not violate geometry rules. 

All of the modelers examined ordered the 
features in a history-based tree whereby all 
features act on the model based on what fea­
tures precede it in the tree but ignore what 
proceeds it. This history basis has a number 
of implications. First, construction geometry 
used to define features must exist in the tree 
prior to the feature(s) which depend on it and 
cannot be deleted at a later time without also 
redefining the dependent feature. Next, the 
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Boolean operations incorporated into fea­
tures will only operate on geometry created 
prior to it. For example, a through all hole 
operation will not cut through a flange in the 
path of the sweep if the flange was created 
after the hole operation. Finally, based on the 
previous statement, the overall geometry of 
the part can be altered simply by reordering 
features in the tree (a capability shared by all 
of the modelers). Figure 8 shows how these 
feature trees are represented in the modelers. 
Notice that icons are used to represent dif­
ferent types of elements in the tree (e.g., type 
of feature, the profile sketches used by fea­
tures, parts versus assemblies) and how the 
tree branches. 

View control 
Integral to all model construction is view­
point control. In addition to the controls 
found in 2-D CAD systems, pan and zoom, 
these modelers also allowed the 3-D view­
point to be changed either to predefined 
orthogonal or pictorial viewpoints, user-
defined viewpoints, or through free rotation. 
View controls are usually easily accessible 
and/or available through hot keys. 

In addition to controlling point of view, the 
modelers also allow geometry to be repre­
sented in numerous ways. Typical options 
included: 
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Figure 8 - Example feature tree interfaces. 
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• Wireframe 
• Shaded 
• Hidden lines removed 
• Construction geometry hidden or visible 
• Hidden lines grayed/dashed 

The common interface standard seems to be 
to have construction geometry, such as 
planes, appear in wireframe and not be 
affected by the rendering of the part model. 
This has both its advantages and disadvan­
tages: it always makes construction geome­
try accessible (when set to visible), but also 
leads to orientation/location confusion on 
the part of the user. 

Evaluation of the design 
Going hand in hand with the creation of a 
(virtual) model in the modeling system is 
analyzing it to see if it meets design criteria. 
Though central to the use of modelers in 
industrial settings, this area will only be 
briefly outlined here. The modelers evaluat­
ed all have the capabilities of doing mass 
properties calculations on the parts. In addi­
tion, density values can be assigned to parts 
so that assemblies can also be appropriately 
evaluated. In addition to visual inspection of 
parts and assemblies, the modelers also have 
measuring tools to measure linear and angu­
lar distances between features in real or pro­
jected dimensions. Interference (overlap) 
between features is evaluated either visually 
or with Boolean operations. Usually separate 
from the base modeler package are finite ele­
ment analysis, kinematic/dynamics, and 
rapid prototyping (for physical part analysis) 
tools. Depending on the level of integration, 
information is exchanged between the mod­
eler and analysis tools either through the 
native file format of the modeler or through 
a neutral format such as IGES. Results of the 
analysis then inform the designer how the 
model might be modified to better meet the 
design specifications. After a round of model 
modifications, the analyses can then be 
repeated and, as necessary, the entire cycle 
repeated until the designer is satisfied with 
the results. 
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Implementation - Documentation 
Once a design is finished, 3-D model infor­
mation is converted into a form usable by the 
latter stages of the product realization 
process. Historically, paper documentation 
in the form of working drawings was central 
to the documentation of a design for manu­
facture. Paper documentation is created via 
the modeling system in much the same way 
it is with a 2-D CAD system, with some 
important differences. A typical process for 
producing virtual drawings, which can then 
be printed, might be: 

• Establish a paper size for printing 
• Create or retrieve a titleblock and border 

for the drawing 
• Create views of the model within the 

titleblock 
• Detail the views with appropriate dimen­

sional, symbolic, and text information 
• Store and print the document 

This process usually takes place within a 
module separate from where the modeling is 
done, with a separate set of tools used for 
creating the drawing. This module has much 
of the look and feel of a 2-D CAD package, 
but usually has much less emphasis on tools 
used to create linework representing model 
geometry. This is because linework is large­
ly created by capturing projections of the 
model. Using viewing tools similar or iden­
tical to the tools used to establish views 
within the modeling module, views of the 
model are laid out within the drawing bor­
der. For orthographic views, the user often 
establishes a 'base view' with other views 
projected based on their location relative to 
the base view. Scale is established for the 
base view and all associated views. View 
parameters can typically be established for 
each view to indicate how hidden edges and 
tangents should be represented. 

Another important distinction from tradi­
tional 2-D CAD is that much of the dimen­
sioning, per se, has already been done when 
dimensional constraints were associated 
with features within the model. In theory, the 
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same constraints used to define model fea­
tures should also be appropriate for defining 
the geometry in the working drawing. In 
reality, there will almost always be a diver­
gence from how a model is constructed and 
how a part will actually be manufactured. 
For that reason, there are tools available to 
create additional dimensions (reference or 
otherwise) and to suppress existing dimen­
sional constraints. 

The close tie between view generation and 
dimensional detailing and the model is 
because a dynamic link is preserved between 
the working drawing and the 3-D model. In 
all of the packages evaluated, changes in the 
model are reflected in the drawings and vice 
versa. This bi-directional associativity is 
both a tremendously powerful tool for keep­
ing drawings accurate and up to date, but 
also tends to limit the liberties one can take 
in detailing a drawing. Since the drawings 
are updated with no human intervention, 
drawing conventions which violate true pro­
jection or use subjective geometry represen­
tation are typically not allowed. 

It is worth noting that other information con­
tained within the model database can also be 
dynamically linked to the working drawings. 
Information, which might be used in a bill of 
materials or parts list, can be linked via vari­
ables within the drawing. 

Even with the limitations imposed by the bi­
directional linkage between the drawings 
and the model, there tends to be considerable 
flexibility in establishing the classic view 
types used in drawings, including: 

• Sections • Auxiliary 
• Partial or broken • Removed 

Sectional views are typically established by 
defining a cutting plane - either as an exist­
ing construction plane or as an extruded 
edge - and then indicating the appropriate 
view to section and show a cutting plane 
line(s). Partial or broken views can be creat­
ed by indicating a region that should be vis­

ible in a standard view. Auxiliary views sim­
ply have the user indicate a base view and an 
alternate edge (e.g., construction plane/axis 
or model edge) to act as a folding line to 
revolve a view about. Removed views can 
either be existing projected views moved 
from their standard locations, or new base 
views established independent of any other 
base view. These view representation capa­
bilities are often combined. For example, a 
detail might be created by establishing a 
removed, partial, section view at a different 
scale. In addition to the flexibility of creat­
ing multiple view types, there is the ability 
to bring in multiple parts-either independent 
or as part of an assembly. 

Conclusion 
The results of this evaluation clearly show 
that there are significant commonalties 
between the modelers in the objects and 
actions used to define primary interface ele­
ments. It is also clear by reviewing the inter­
face screen capture figures in this paper that 
the syntactic level surface details of the 
interfaces differ markedly between model­
ing systems. Still, at a semantic level, there 
were clear common themes that could be 
mapped between all of the modelers and 
used as the basis for instructional material 
independent of particular software packages. 
It is hard to extrapolate whether these com­
monalties will hold across all modelers on 
the market, but the four systems surveyed 
represent a significant percentage of the 
modelers currently being used in four and 
two-year engineering and technical graphics 
programs in the United States (Clark & 
Scales, 1999). Further work will needed to 
be done by this author or others to see 
whether these commonalties hold for other 
popular industrial modelers, such as I-
DEAS, Unigraphics, and Catia. 

By using the Object-Action Interface (OAI) 
model applied to the design process as an 
overall structuring methodology, the follow­
ing interface elements were identified: 

• Profile sketching 
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• Implicit and explicit profile constraints 
• Sweeping operations 
• Construction geometry creation 
• Duplication of features 
• Dynamic dimensional constraint 

modification 
• User-definable dimensional constraint 

relations 
• History-based feature trees 
• View control 
• Bi-directional links between model 

and detail drawings 
• View creation and detailing options 

for detail drawings 

These interface elements encompass much 
of what might be used in part creation, mod­
ification, and documentation; central activi­
ties in both academic and industrial use of 
3-D constraint-based solid modeling. These 
activities in no way cover all of the activities 
performed with modeling systems in acade­
mic and industrial settings. For example, 
assembly modeling was not included in this 
evaluation. Still, this work validates the 
potential usability of the OAI model as an 
approach to develop instructional materials 
and methods to teaching modeling which 
spans the majority of software tools current­
ly on the market. 
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