
Autumn • 1999

3-D Constraint-based Modeling:
Finding Common Themes

Eric N. Wiebe
North Carolina State University

ABSTRACT
The move of constraint-based 3-D modeling into the mainstream of engineering design and manu­
facturing has been coupled with an increase of publishing activity in 3-D modeling instructional
texts. Unfortunately, there is a lack of a clear overarching framework for teachers to understand
what are the common themes which tie all of these different modeling tools together. This paper uses
Shneiderman's (1998) Object-Action Interface model, along with the engineering design process, as
a framework for understanding software interface elements which are common across four popular
3-D modeling software tools. The goal is to provide an educational framework from which instruc­
tional materials can be developed, independent of any one software tool, but which still address the
fundamental functionalities of these new, powerful tools.

Introduction
Three dimensional modeling, especially
constraint-based modeling, has broken into
mainstream instruction in the past couple of
years. In as much as book publishing is an
indicator of instructional activity, in the past
two years a number of reference and tutorial
texts have been published about constraint-
based modeling systems such as Pro/ENGI­
NEER (Pro/E) and Mechanical Desktop. In
the research arena, much of the interest to
date has been the relationship of 3D instruc­
tion and visualization ability (c.f., Gorska,
Sorby & Leopold, 1997; Leach & Matthews,
1992; McWhorter & et al., 1990; Ross &
Aukstakalnis, 1993; Shah, 1994; Sorby &
Baartmans, 1994; Wiebe, 1993). Another
important issue is a general knowledge of
how 3D constraint-based modeling software
functions. In addition to a general ability to
visualize 3D form is the ability to transform
that mental form into a usable electronic
geometric database. Particularly useful is a
higher level understanding of this class of
software, transcending any one particular
software package. Just as with visualization
skills, these software skills can be taken into

the professional sector and applied to what­
ever modeling software is being used.

A model for instructional design
The goal of this current line of research is to
look at the best way to impart a robust, gen­
eral understanding of 3D constraint-based
modeling. Related to this goal is facilitating
the teaching of the specific software being
used in an engineering/technical graphics
class. Stepping back from simply looking at
the computer interface, understanding how
computer software will be used requires an
understanding of the knowledge the user
currently possesses and the tasks which they
are attempting to complete using the com­
puter software. The tasks the user brings to
the computer can be divided between
'objects' and 'actions' (Figure 1). Objects
may be pieces of information or physical
entities representing how the task might be
achieved if it were done exclusively apart
from the computer. Actions represent how
the objects will be manipulated. These
objects and actions associated with the task
have a parallel in the interface of the com­
puter software. In this case, the objects are

Wiebe-15

Volume 63 • Number 3

universe intentions metaphor plan

atoms steps

Objects Actions

Task

Figure 1 - Object-Action Interface model (after Shneiderman, 1998).

visual entities such as buttons, menus, text,
and cursors, which make up the interface.
Objects on the interface can be manipulated
through actions taken with input devices
such as a mouse or keyboard. The objects
and actions of the interface should serve as
metaphors for the objects and actions of the
actual task which need to be accomplished.
The degree to which the mapping between
the task and the interface can be successful­
ly bridged is a measure of how effectively
the software can and is being used. The
model that has been described is
Shneiderman's Object-Action Interface
(OAI) Model (Shneiderman, 1998).

Taking 2-D CAD software as an example,
the tasks to be performed have many paral­
lels with techniques executed with tradition­
al drafting instruments. Understanding how
well students can transition from traditional
drafting to 2-D CAD packages can be
explained, in part, by how directly tech­
niques such as geometric construction and
view layout can be translated to the com­
mands and visual representations provided
by the CAD software. Unfortunately, stu­
dents learning 3-D modeling packages do
not necessarily have real world experience in
building 3-D models from wood, clay, plas­
tic, or metal. Even if they did, there is some
question as to how well these model building
tasks translate to the interface metaphors

16 • Engineering Design Graphics Journal

used in modern 3-D modeling software.
Is there then, any use in the OAI model in
understanding the use of 3-D modeling soft­
ware? Another approach to understanding
the object-action components of the 'tasks'
students bring to the software is to think of
the tasks as being more conceptually formed
tasks rather than ones rooted exclusively in
physical objects and actions. Rather than
thinking in terms of using a real compass to
strike an arc, a conceptual understanding of
how a line (the object) can be swept out in a
circular path (the action) by constraining it
to be a fixed distance from a point. In this
context, tasks that the students bring to the
software (and their understanding of these
tasks) will be based on the instructional
materials presented by the teacher in addi­
tion to previous experiences.

Related to the OAI model is a more general
notion of the 'mental model' the user has of
the software tool (Carroll & Olson, 1990;
Kuhn & Egenhofer, 1991; Norman, 1987).
One's mental model can be considered
semantic knowledge about a system -
knowledge beyond the memorization of
commands. Combined with syntactic knowl­
edge - specific knowledge of a software
interface - a user is able to predict how the
system will respond to command inputs. A
user can also formulate strategies of how to
approach problem-solving using a particular

Autumn • 1999

system. Successful use of metaphors and
concepts in instruction which reinforce a
correct mental model of the system will
enhance a student's ability to grasp the intri­
cacies of the system (Norman, 1987; van der
Veer&Wijk, 1990)

In summary, the OAI model and the appli­
cation of mental models to human-comput­
er interaction predict that arming students
with strategies for model building which
closely parallel the interface of 3-D model­
ing software should enhance the students'
abilities to use the software to complete
modeling tasks. The question then is, can a
generic set of instructional strategies be
developed which support instruction on a
wide variety of 3-D constraint-based model­
ing software? This paper will begin explor­
ing this issue by first looking at the feasibil­
ity of defining a set of generic objects and
actions universally used in popular model­
ing software packages. From this under­
standing, instructional strategies can be
developed which support the use and under­
standing of these interface elements.

Understanding the design process
The beginning point for developing a set of
generic interface objects and actions is to
understand the software's context in the
mechanical design process (e.g., Wiebe,
1997; Wiebe, Howe, Summey & Norton,
1997). Implicit in this is an understanding
that there are limitations as to how much of
the design process is generic to most
mechanical design environments and how
much of this process is typically covered in
engineering and technical curriculums.
Looking at this process, most final products
involve multiple discrete parts that must be
coordinated in an assembly. It is also impor­
tant to recognize that there are activities,
which do not directly relate to the design
process but are important for the manage­
ment/use of the system. Examples of these
auxiliary activities include: file manage­
ment, correction of mistakes, and changes in
modeling strategies.

At the broadest level, the mechanical
design process can be thought of consisting
of three phases (Bertoline, Wiebe, Miller &
Mohler, 1997):

• Ideation
• Refinement
• Implementation

These phases happen both concurrently and
cyclically towards a final design solution,
and 3-D modeling software plays a role in
all three phases.

In the ideation phase, design requirements
are embodied in potential geometric forms
and material specifications. In some cases,
the design is a derivation of an existing
design that may already exist as a comput­
er model. In other cases, the design is cre­
ated from scratch. The geometric form,
which represents the design goals, can be
decomposed into individual or groups of
features. It is these features, representing
the 'functionality' of the design, which need
to be embodied in individual parts and
assemblies. Here we can think of function­
ality as representing not only the design's
function as a finished product, but also how
each feature might map to the functional
processes applied by the machines used to
manufacture the part(s). There is also a
need for geometric relationships to be
established within and between the features
in order to bring them together to become a
whole design. These geometric relation­
ships, along with algebraic relations, are
meant to embody the design intent of the
model.

Successful creation of the model requires
the designer to translate the geometric fea­
tures of the final, physical model into geo­
metric features that can be created in the
modeling software. Though the final, virtu­
al computer model of the design may look
and behave much like the proposed physi­
cal design, its construction probably differs
from how the physical design is fabricated.
It follows that the strategy developed for

Wiebe-17

modeling the design depends on the user's
semantic knowledge of what tools are avail­
able in the modeling software for creating
and manipulating geometry. In terms of the
OAI model, this strategy marks a critical
mapping of the user's task (build a virtual
model of this design) onto the software inter­
face (use these commands in this sequence
to build the model). Since the user is using
off-the-shelf software, not designing it, the
interest is less in proposing new interface
elements as it is in how best to let the
user/student know what is available and how
best the tool can be used.

In the refinement stage, the modeling strate­
gy developed in the ideation stage is applied
to the actual construction of the model. The
transition now has to be made from general
semantic knowledge of software capability
to specific syntactic knowledge of software
commands and interface elements. Through
a series of actions, geometric features are
created and related to other features, both
within and between parts in an assembly.
This process entails both bottom up and top
down strategies. In the former, individual
parts are modeled from features and brought
together into assemblies. In the latter, an
overall assembly strategy is defined and
parts modeled and assembled to meet this
design. Through iterative analysis, decisions
are made as to how the model should be
modified to meet specific design goals.
These analyses range from informal meth­
ods such as visual inspection of the fit of
parts in an assembly to more rigorous meth­
ods such as finite elemental analysis.
Changes to the model are also made in the
way the geometry behaves to modifications
in size and location of features. If it is deter­
mined that the design intent has not been
properly embedded in the relationship of
features, then these alterations of underlying
relationships are made at this time.

In the implementation stage, the geometric
database, representing the design, is trans­
formed in ways that help support the manu­

facture, sale, and support of the product.
These transformations might include the cre­
ation of traditional working drawings from
the model or the creation of CNC code for
machining molds. Similarly, technical illus­
trations can be created from projections of
the model for use in brochures or in service
manuals.

Of most interest in this paper is the activity
taking place during the ideation and refine­
ment stages. More specifically, planning and
then creation of individual part models. This
decision is not meant to diminish the impor­
tance of the other ways in which the model­
er is used in the mechanical design process.
Rather, part modeling represents what is
probably the most common use of modeling
software in the academic setting (c.f., Barr &
Juricic, 1992; Howell, 1995; Clark & Scales,
1998). With that said, a students' under­
standing of the part modeling process will
have considerable impact on their applica­
tion of the modeling software in other areas
of the design process. For example, the ini­
tial modeling strategy developed in the
ideation phase will determine how the model
is manipulated during iterative analysis.

Defining generic interface objects
and actions
A deeper understanding of the common
interface objects and the actions taken with
them - as defined by the most popular con­
straint-based modeling packages - will pro­
vide a means for helping students develop
effective model planning and construction
techniques. It is worth noting that an explo­
ration of generic modeling tasks has previ­
ously be done at a higher level and with an
older generation of modeling software by a
number of researchers (c.f, Barr & Juricic,
1992; Bertoline, Wiebe, Miller & Mohler,
1997; Howell, 1995). The goal here is to
both use the most current generation of soft­
ware available and to approach the defini­
tion of the tasks in a more systematic and
detailed manner. The OAI model gives flex­
ibility to the task definition by recognizing

18 • Engineering Design Graphics Journal

Autumn • 1999

the hierarchical nature of most tasks and the
similarly hierarchical nature of many soft­
ware interface elements. There are, however,
practical limits regarding the extent to which
the full depth of the hierarchy can be
addressed in this paper.

Initially, a checklist of generic objects and
actions represented in modeling interfaces
was developed based on personal experience
and a selection of software-specific texts
currently available:

• Pro/ENGINEER (Bolluyt, 1998; Toogood,
1998; Utz, Cox & Steffen, 1997)

• Mechanical Desktop (Howell, 1998)

This checklist was used while building a
simple assembly (Figure 2) with a range of
modeling packages:

• Mechanical Desktop
• Pro/ENGINEER
• SolidEdge
• SolidWorks

The next step was to evaluate how these
software packages varied in their implemen­
tation of the initially defined interface
objects and actions. Questions were asked,
such as:

• Are objects visually or metaphorically
represented differently between pack­
ages?

• Are actions missing (e.g., automated by
the software) or organized differently
between packages?

From the initial checklist, a new set of com­
mon interface object/action elements were
developed which apply to all of these soft­
ware packages and represent real-world
application of the software.

Ideation - Modeling Strategy
As stated previously, the model building
strategy should ideally be conceived during
the ideation stage and prior to the actual con­
struction of the model. More so than work­
ing with 2-D CAD systems, careful planning
is central to the construction of all but the
simplest parts in a 3-D constraint-based
modeler. Planning requires knowledge of the
basic methods used by the modeler to gener­
ate and constrain feature geometry. For most
modelers, the primary method of creating
feature geometry is to (see Figure 3):

• Define a sketch plane in 3-D space
• Sketch a 2-D profile on the sketch plane
• Dimension/constrain the profile to other

Figure 2 - Test assembly.

Wiebe. 19

Volume 63 • Number 3

Figure 3 - Generalized sweep operation
(SolidEdge).

construction or part geometry
• Define how the profile is swept away

from the sketch plane to define a 3-D
solid form

• Define the Boolean relation to the exist­
ing part geometry

Strategies that might be considered by the
user include:

• Can/should multiple features be con­
tained within a single sweep operation?

• Can/should a single feature be defined
by multiple sweep operations?

• What is the appropriate sequence for the
sweeping operations? For example,
should all of the positive operations
adding material be done first before sub-
tractive features?

• Is there feature geometry that can be
reused through mirroring or copying
operations?

• Are there lines of symmetry that can be
aligned along construction (datum)
planes?

All of the above strategies are largely con­
fined within a part. As part of a top-down

20 • Engineering Design Graphics Journal

design process, one may also be con­
cerned with how the part features and con­
struction geometry will interact with other
parts in an assembly. For example, one
may want to define features about con­
struction planes that can be aligned
between parts. Similarly, one may also
want to try to have as many sweeps as pos­
sible mimic the actual machining opera­
tions being used to manufacture the part.

Through an iterative cycle of progressive­
ly more difficult lab exercises, students
can explore the capabilities of these gener­
alized sweeping operations and develop
metaknowledge about the software capa­
bilities. This knowledge can then be used
to deconstruct existing geometric repre­
sentations of parts into a series of sweep­
ing operations. It is not unreasonable to
expect students to sketch their plan of
action on grid paper prior to actual execu­

tion of the model on the modeling system.

Refinement
Profile sketch process
With a basic strategy in place, the modeling
being done in the refinement stage can com­
mence. Since all geometry must be anchored
relative to some coordinate system, some
decision has to be made as to how this will
be achieved. The approach is determined by
a combination of system functionality and
strategies determined in the ideation stage.
A common approach is to define three mutu­
ally perpendicular construction (datum)
planes intersecting at a global coordinate
system origin (as seen in Figure 4). For
modelers such as Pro/E, SolidWorks, and
SolidEdge, these planes can be created by
default when a new part is created.

The first sweep operation creates what can
be considered the 'base feature' of the part.
The first step is to choose one of the con­
struction planes in order to define an orien­
tation and location of the profile used to cre­
ate the first feature. Once a plane is chosen,
an X-Y coordinate system is oriented on the

Autumn • 1999

Figure 4 - Three mutually perpendicular construction planes used to define the initial
geometry of a part (SolidWorks).

plane in a number of ways: 1) by systemati­
cally rotating/flipping a set of coordinate
axes (Mechanical Desktop), 2) based on an
established local coordinate system on the
plane (SolidEdge), or 3) choosing a mutual­
ly perpendicular plane and indicating its X-
Y orientation (Pro/E). Because it is the first
feature created in the modeler, it is not for­
mally a Boolean operation and therefore
simply adds geometry to the void. This fea­
ture is often used as a basis for orienting and
locating new features.

A key technique needed in using modelers is
the sketching of the 2-D profile used in all

sweeping operations. Though the profile
definition can be automated for simple
geometries (e.g., a circle for creating a swept
cylinder), the user has to sketch and create
constraints for most profiles. After a sketch
plane is defined, 2-D drawing tools are used
to create a profile. These tools consist of
both creation tools, such as line and arc
tools, and editing tools, such as trim/extend
and copy. The sketching takes place in either
a pictorial or orthogonal view. Some systems
default to an orthogonal view (e.g., Pro/E)
while others hold the existing, usually picto­
rial, view (e.g., SolidWorks). The profile
sketch consists of as little as a single'line or

Wiebe. 21

Volume 63 • Number 3

as complex as multiple closed loops of
straight edges, circular curves, and spline
curves (Figure 5). The requirements of the
profile depend on the modeler one uses.
Some require single closed loops while oth­
ers allow open loops or multiple loops.
Typically, loops cannot overlap and, if there
is more than one loop, none can be open.

The loop that is drawn, combined with the
sweep path, defines the topology of the
eventual solid feature. The geometry of the

solid feature is defined through a combina­
tion of explicit and implicit geometric con­
straints. Within the profile, implicit con­
straints are relations of geometric elements
to each other. Examples include:

• Parallelism • Similar size/length
• Perpendicularity • Symmetry
• Collinearity • Closure

How implicit constraints are implemented
depends on the modeler. With most model­
ers, there is a set (or customizable) range of

SolidEdge

—

Example Implicit Constraints
1. Orthogonality
2. Tangency
3. Collinearity
4.Alignment/Attachment

SolidWorks

,1.750

Rslaaws J£r*tiw$ ••

RUsiij-Ttw'12: . .

T>K« Tangent

. SUita Solnfcnf

DBtf,*, R^-imrs ty

r.
ff" &wai*|* l l

al«j

Figure 5 - Example profile sketch interfaces.

22 • Engineer ing Design Graph ics Journa l

Autumn • 1999

Parameter

Boolean operation to apply

Distance of the sweep

What type of sweep path

Direction of the sweep

Notes

Union, Subtraction, or Intersection

Can be set as a scalar unit or defined rela
tive to other geometry (e.g., through next
surface)

Linear, circular, a defined curve, or a curve
connecting a series of profiles

Linear or circular sweeps can come one
direction or from both sides of a profile

Table 1 - sweeping parameters.

size or orientation variation in which a pro­
file element will be considered: the same
size as another element, horizontal, connect­
ed end to end with another element, etc. If
the element is within range (e.g., within 5
degrees of vertical), the appropriate con­
straint is applied. With some modelers, this
application of constraints happens 'on-the-
fly', dynamically cleaning up the sketch as
one draws. With other modelers, the user fin­
ishes the sketch and then instructs the mod­
eler to apply appropriate constraints. Most
modelers will provide visible icons indicat­
ing which implicit constraints were applied
and with what other elements (see Figure 5).

Explicit constraints are typically the size and
location of geometric elements relative to
other elements in the profile or to existing
geometry. How these explicit constraints are
established depends on the modeler. In
some, such as Pro/E, visible size and loca­
tion dimensions are placed to fully define (in
combination with the implicit constraints)
the geometry. In other modelers, size and
location are determined exclusively by the
act of sketching the profile geometry — no
other dimensioning is needed. One can,
however, add dimensions to provide for con­
trol of the geometry. This difference is often
used as the defining element between para­
metric and variational constraint-based mod­
elers.

Sweeping operations
The completed profile is combined with
sweeping parameters to create the solid fea­
ture. The common sweeping parameters are
outlined in Table 1.

Where and how these parameters are defined
depends on the modeler (Figure 6). In some
cases, parameters are defined before the pro­
file sketching (the Boolean operation fre­
quently is). In other cases, all of the parame­
ters can be defined after the profile sketch
has been created (e.g., SolidWorks). It is also
worth noting that the specific language used
to define the parameters varies from package
to package. For example, none of the pack­
ages refer to the Boolean operation by its
formal name. Instead, the Booleans are
packaged in 'feature-based' commands such
as protrusion, cut, and hole. With some mod­
elers, the feature defines both the Boolean
and other sweeping parameters. For exam­
ple, Pro/E uses the Shaft feature to define a
Boolean Union created with a revolved
sweep.

There are, of course, exceptions to this gen­
eralized sweep description of feature cre­
ation. In some cases, parameter definition is
automated: hole features may always use a
linear sweep. In other cases, the feature def­
inition bears essentially no resemblance to
profile sweeping (e.g., Chamfer and Round
feature commands typically only require the

Wiebe • 23

ime 63 • Number 3

W\ fo1** I I IS lBJB|Ef f12 lTB^c^fom^ 3 step; |aT25i; 3

Element Info
Attributes One Side
Section Defined
Direction Defined
Depth Blind, depth = 0313

|B{S SolidEdge

Sweeping Parameters

1. Boolean operation

2. Distance of sweep

3. Type of sweep path

4. Direction of sweep

^iMBijaifffii
:rteffntJatior»——

P B.M

C ihrough

C ToElane

f" To£«e \

r Fiom To (2

C Mid Rone 7
1 Ocy-i-

Opetabon

CBvc

£ 0
C iain

<~ [rtased

See

Distance

Draft Angle:

n*.. I. CaartL. Hatv

Mechanical
Desktop

-JKL)
1 * ™

EndCondtton 1

Tjwl Blind j j '
(2) - - i

DeBlh:|UlIJMi|VJ/ -^j

Selected fiems;

1
r~ SdhDiectiora

(4 ^) Sol , i r«

* BeverseDtectjon

V Draft WhieExtjudhg |

Angle: |l.00deg -jA \

P prpfl OjXwaid

l 5 1 " : |Directon1
1 — 1

SolidWorks

HHHilid
OK

Cancel

Help |

Figure 6 - Generalized sweep interface examples.

user to select edges on the model to operate
on and then specify dimensional con­
straints).

Construction geometry creation
Construction geometry is generally defined
as geometry used in support of the definition
of the solid model geometry. Construction
geometry exists in the model database but

24 • Engineering Design Graphics Journal

does not explicitly represent 'visible' compo­
nents of the model. This geometry is typical­
ly created as geometry in 2-D space used in
support of profile sketching or as geometry
in 3-D space used in support of profile
sweeping, feature copying, or other feature
operations. The most common 2-D geometry
created in support of profile construction is
center lines used to indicate symmetry.

Autumn • 1999

Geometry

0-D Point

1-DLine

2-D Plane

3-D Cylinder

Example Definition

Intersection of a construction.
axis with a construction plane

Intersection of two construction
planes

Parallel with a construction plane
and tangent to a curved face

Collinear with a construction
axis at a set radius

Example Use

Define the limiting extent of a
linear sweep as a point along
a construction axis

Define an axis of revolution
for a revolved sweep

Define a sketching plane for
a profile

Define a series of curves
(via intersections with planes)
for radial patterning

Table 2 - Examples of construction geometry in 3-D space, how they might be defined,
and how they might be used.

Two-dimensional center lines can also be
used either in the sketch plane or 3-D space
to define an axis of revolution for revolved
sweeps. Definition of geometry in 3-D
space, in particular, demands a basic knowl­
edge of descriptive geometry and how exist­
ing geometry can be used to define new
geometry. Table 2 gives examples of con­
struction geometry.

Duplication of features
Once a feature is created, it can be propagat­
ed in a number of ways. Most systems sup­
port some type of patterning. Linear pattern­
ing can be defined as a 1-D or 2-D array of
copies of a feature. Both the number of
copies in each orthogonal dimension and the
spacing between copies needs to be defined.
With a radial pattern, an axis of rotation is
defined, along with a radius, the number of
copies, and the angular displacement
between copies (either as an angle or distri­
bution about 360 degrees). These patterns
are not unlike patterned arrays in 2-D CAD
systems, except they can be defined on any
3-D plane in space and are used to propagate
3-D features. In addition to patterning, most
systems also support creating a singular
copy, either mirrored about a plane of sym­

metry or translated some offset from the
original. With all types of duplications, vary­
ing levels of dependencies can be estab­
lished between the original and the copies.
These dependencies often include indepen­
dence or dependence of the copy to the orig­
inal's sweep and profile parameters. For
example, dependency can be established
such that a change in the original hole's
diameter induces a similar diameter change
in all of the copies.

Redefinition of the model
Using various interface mechanisms, all of
the modelers allow for extensive redefinition
of features. The modelers provide fairly
direct mechanisms for modification of data
values assigned to constraint dimensions.
These changes are typically applied to pro­
vide for fairly localized changes to individ­
ual features, but can also involve topological
change throughout the model. Various error-
checking mechanisms warn of the creation
of illegal geometry, but usually not before
constraint values are modified and the model
attempts the reconfiguration. With all of the
modelers, constraint values can be indirectly
modified by linking their values to the val­
ues of other constraints (Figure 7). Using

Equation

New battalion

7
4
1
0

8
5
2
(

9
6
3
)

1
X

4

=

|"01@SI-.etcri1" = "DK^Base-Extiude" + .31

OK Cancel

J \

Figure 7 - A user defined relational constraint (SolidWorks).

algebraic equations and dimensional con­
straints as variables, relationships are
defined between constraints. Typically there
is a hierarchy where only a single constraint
variable is allowed on the left hand side of
the equation and the constraint variable(s)
on the right would then 'drive' the left side
constraint. In Figure 7, Dimension 1 (Dl) of
the feature Base-Extrude drives Dimension
1 of (profile) Sketch 1.

In addition to modifying dimensional con­
straint values, the parameters defining the
sweep or the geometry of the sweep profile
can also be changed. Typically, a redefini­
tion command allows one to choose the fea­
ture to redefine and then takes the user back
through dialogues/menus that were used to
define the feature in the first place. Again,
error checking is used to assure the redefined
feature does not violate geometry rules.

All of the modelers examined ordered the
features in a history-based tree whereby all
features act on the model based on what fea­
tures precede it in the tree but ignore what
proceeds it. This history basis has a number
of implications. First, construction geometry
used to define features must exist in the tree
prior to the feature(s) which depend on it and
cannot be deleted at a later time without also
redefining the dependent feature. Next, the

26 • Engineering Design Graphics Journal

Boolean operations incorporated into fea­
tures will only operate on geometry created
prior to it. For example, a through all hole
operation will not cut through a flange in the
path of the sweep if the flange was created
after the hole operation. Finally, based on the
previous statement, the overall geometry of
the part can be altered simply by reordering
features in the tree (a capability shared by all
of the modelers). Figure 8 shows how these
feature trees are represented in the modelers.
Notice that icons are used to represent dif­
ferent types of elements in the tree (e.g., type
of feature, the profile sketches used by fea­
tures, parts versus assemblies) and how the
tree branches.

View control
Integral to all model construction is view­
point control. In addition to the controls
found in 2-D CAD systems, pan and zoom,
these modelers also allowed the 3-D view­
point to be changed either to predefined
orthogonal or pictorial viewpoints, user-
defined viewpoints, or through free rotation.
View controls are usually easily accessible
and/or available through hot keys.

In addition to controlling point of view, the
modelers also allow geometry to be repre­
sented in numerous ways. Typical options
included:

Autumn • 1999

Pro/E

l i . Model Tien H R E

1 Fie Tree

rj, BODV.PRT|

I

1

r
f

«. DTM1

•*. D7M2
• DTM3

«, MAIN PHOT

1—«. Pattern (TABS-TOP)

]—4> Group COPIED_GROUP

r | — « • Pattern (TABS-BOTTOM)

«. FLANGE-FRONT

4> aANGE-BACK

4> BORE-RANGE

«. CBORE FLANGE

* BORE-MAIN

1—«. Pattern (THBORE FLANGE)

) «. Pattern (TBOfiE FLANGE-CTHR

< l 1

-

ir

!

J

Mechanical
Desktop

I Drawing j

E 1 - ^ B 0 D Y

[}-^EKtrusionMdpla

—gWorfcPlanel

-gWorkPI 3 ne2

—gWort<Plane3

R-jj j ' tab-up

L-£k]Sk«ch3

—fJQ|tab-tjp-riote

— (J)Cyl CenterAxis I

—%ytab-up- ATay 1

— gWorkPlane4

E}-jjfE«1rusionBlind3

—^jtab-down-hole

SolidEdge

[Select i l

grj Main Body
g j tab

i'l (3 tab hole * '
S°g Pattern-tab
fllft Minor-Pattern lab
fl|Q Miiror-tab
J*8 Pattern-tab hole
fl|Q Mirroi-Pattetn tab hole
lUlQ Miiror-tab hole
H I Main bore

SolidWorks

" Backup of body

« & Backup of body _ ^

| \ Planel

| - \ Plane2

I - \ Plane3

; -t* Origin

i ' J rQ Base-Extrude

EB | ^ Boss-Extrude1

B Ca) Cut-Extrude2

\ Axisl

| ..*jjy| CirPattern2

i |S0 Mirrorl

| - \ Plane6

i - \ Plane7
gg (j ^ Boss-Extrude2

H fa) Cut-Extrude4

H3-FB| Cut-Extrude5

| \ , Axis2

j f g CirPattern3 J

1 \ PlaneS

EB ^ Boss-Extiude3

1+1 Q Cut-Exttude1 • !

<B ̂ J

Figure 8 - Example feature tree interfaces.

Wiebe • 27

ime 63 • Number 3

• Wireframe
• Shaded
• Hidden lines removed
• Construction geometry hidden or visible
• Hidden lines grayed/dashed

The common interface standard seems to be
to have construction geometry, such as
planes, appear in wireframe and not be
affected by the rendering of the part model.
This has both its advantages and disadvan­
tages: it always makes construction geome­
try accessible (when set to visible), but also
leads to orientation/location confusion on
the part of the user.

Evaluation of the design
Going hand in hand with the creation of a
(virtual) model in the modeling system is
analyzing it to see if it meets design criteria.
Though central to the use of modelers in
industrial settings, this area will only be
briefly outlined here. The modelers evaluat­
ed all have the capabilities of doing mass
properties calculations on the parts. In addi­
tion, density values can be assigned to parts
so that assemblies can also be appropriately
evaluated. In addition to visual inspection of
parts and assemblies, the modelers also have
measuring tools to measure linear and angu­
lar distances between features in real or pro­
jected dimensions. Interference (overlap)
between features is evaluated either visually
or with Boolean operations. Usually separate
from the base modeler package are finite ele­
ment analysis, kinematic/dynamics, and
rapid prototyping (for physical part analysis)
tools. Depending on the level of integration,
information is exchanged between the mod­
eler and analysis tools either through the
native file format of the modeler or through
a neutral format such as IGES. Results of the
analysis then inform the designer how the
model might be modified to better meet the
design specifications. After a round of model
modifications, the analyses can then be
repeated and, as necessary, the entire cycle
repeated until the designer is satisfied with
the results.

28 • Engineering Design Graphics Journal

Implementation - Documentation
Once a design is finished, 3-D model infor­
mation is converted into a form usable by the
latter stages of the product realization
process. Historically, paper documentation
in the form of working drawings was central
to the documentation of a design for manu­
facture. Paper documentation is created via
the modeling system in much the same way
it is with a 2-D CAD system, with some
important differences. A typical process for
producing virtual drawings, which can then
be printed, might be:

• Establish a paper size for printing
• Create or retrieve a titleblock and border

for the drawing
• Create views of the model within the

titleblock
• Detail the views with appropriate dimen­

sional, symbolic, and text information
• Store and print the document

This process usually takes place within a
module separate from where the modeling is
done, with a separate set of tools used for
creating the drawing. This module has much
of the look and feel of a 2-D CAD package,
but usually has much less emphasis on tools
used to create linework representing model
geometry. This is because linework is large­
ly created by capturing projections of the
model. Using viewing tools similar or iden­
tical to the tools used to establish views
within the modeling module, views of the
model are laid out within the drawing bor­
der. For orthographic views, the user often
establishes a 'base view' with other views
projected based on their location relative to
the base view. Scale is established for the
base view and all associated views. View
parameters can typically be established for
each view to indicate how hidden edges and
tangents should be represented.

Another important distinction from tradi­
tional 2-D CAD is that much of the dimen­
sioning, per se, has already been done when
dimensional constraints were associated
with features within the model. In theory, the

Autumn • 1999

same constraints used to define model fea­
tures should also be appropriate for defining
the geometry in the working drawing. In
reality, there will almost always be a diver­
gence from how a model is constructed and
how a part will actually be manufactured.
For that reason, there are tools available to
create additional dimensions (reference or
otherwise) and to suppress existing dimen­
sional constraints.

The close tie between view generation and
dimensional detailing and the model is
because a dynamic link is preserved between
the working drawing and the 3-D model. In
all of the packages evaluated, changes in the
model are reflected in the drawings and vice
versa. This bi-directional associativity is
both a tremendously powerful tool for keep­
ing drawings accurate and up to date, but
also tends to limit the liberties one can take
in detailing a drawing. Since the drawings
are updated with no human intervention,
drawing conventions which violate true pro­
jection or use subjective geometry represen­
tation are typically not allowed.

It is worth noting that other information con­
tained within the model database can also be
dynamically linked to the working drawings.
Information, which might be used in a bill of
materials or parts list, can be linked via vari­
ables within the drawing.

Even with the limitations imposed by the bi­
directional linkage between the drawings
and the model, there tends to be considerable
flexibility in establishing the classic view
types used in drawings, including:

• Sections • Auxiliary
• Partial or broken • Removed

Sectional views are typically established by
defining a cutting plane - either as an exist­
ing construction plane or as an extruded
edge - and then indicating the appropriate
view to section and show a cutting plane
line(s). Partial or broken views can be creat­
ed by indicating a region that should be vis­

ible in a standard view. Auxiliary views sim­
ply have the user indicate a base view and an
alternate edge (e.g., construction plane/axis
or model edge) to act as a folding line to
revolve a view about. Removed views can
either be existing projected views moved
from their standard locations, or new base
views established independent of any other
base view. These view representation capa­
bilities are often combined. For example, a
detail might be created by establishing a
removed, partial, section view at a different
scale. In addition to the flexibility of creat­
ing multiple view types, there is the ability
to bring in multiple parts-either independent
or as part of an assembly.

Conclusion
The results of this evaluation clearly show
that there are significant commonalties
between the modelers in the objects and
actions used to define primary interface ele­
ments. It is also clear by reviewing the inter­
face screen capture figures in this paper that
the syntactic level surface details of the
interfaces differ markedly between model­
ing systems. Still, at a semantic level, there
were clear common themes that could be
mapped between all of the modelers and
used as the basis for instructional material
independent of particular software packages.
It is hard to extrapolate whether these com­
monalties will hold across all modelers on
the market, but the four systems surveyed
represent a significant percentage of the
modelers currently being used in four and
two-year engineering and technical graphics
programs in the United States (Clark &
Scales, 1999). Further work will needed to
be done by this author or others to see
whether these commonalties hold for other
popular industrial modelers, such as I-
DEAS, Unigraphics, and Catia.

By using the Object-Action Interface (OAI)
model applied to the design process as an
overall structuring methodology, the follow­
ing interface elements were identified:

• Profile sketching

Wiebe • 29

• Implicit and explicit profile constraints
• Sweeping operations
• Construction geometry creation
• Duplication of features
• Dynamic dimensional constraint

modification
• User-definable dimensional constraint

relations
• History-based feature trees
• View control
• Bi-directional links between model

and detail drawings
• View creation and detailing options

for detail drawings

These interface elements encompass much
of what might be used in part creation, mod­
ification, and documentation; central activi­
ties in both academic and industrial use of
3-D constraint-based solid modeling. These
activities in no way cover all of the activities
performed with modeling systems in acade­
mic and industrial settings. For example,
assembly modeling was not included in this
evaluation. Still, this work validates the
potential usability of the OAI model as an
approach to develop instructional materials
and methods to teaching modeling which
spans the majority of software tools current­
ly on the market.

References
Barr, R. E., & Juricic, D. (1992). A new look

at the engineering design graphics process
based on geometric modeling. Engineering
Design Graphics Journal, 56(3), 18-26.

Bertoline, G. R., Wiebe, E. N., Miller, C, &
Mohler, J. L. (1997). Technical graphics
communications. (2 ed.). New York, NY:
McGraw-Hill.

Bolluyt, J. E. (1998). Design modeling with
Pro/ENGINEER. Shawnee-Mission, KS:
Schroff Development Corp.

Carroll, J. M., & Olson, J. R. (1990). Mental
models in human-computer interaction. In
M. Hellander (Ed.), Handbook of human-

30 • Engineering Design Graphics Journal

computer interaction, (pp.45-65). Amsterdam:
North-Holland.

Clark, A. C. & Scales, A. Y. (1999). Taking the
pulse of the profession, Paper presented at
the ASEE Engineering Design Graphics
Division Mid-Year Meeting, Columbus, OH.

Gorska, R., Sorby, S., & Leopold, C. (1997).
Gender differences in visualization skills -
An international perspective. Paper present­
ed at the ASEE Engineering Design
Graphics Division Mid-Year Meeting,
Madison, WI.

Howell, S. K. (1995). The use of a parametric
feature based CAD system to teach introduc­
tory engineering graphics. Engineering
Design Graphics Journal, 59(1), 27-33.

Howell, S. K. (1998). Mechanical desktop:
Parametric solid and assembly modeling.
Albany, NY: Autodesk Press.

Kuhn, W., & Egenhofer, M. J. (1991). CHI '90
workshop on visual interfaces to geometry.
SIGCHI Bulletin, 23(2), 46-55.

Leach, J. A., & Matthews, R. A. (1992).
Utilization of solid modeling in engineering
graphics. Engineering Design Graphics
Journal, 56(2), 5-10.

McWhorter, S. W, & et al. (1990). Evaluation
of 3-D display techniques for engineering
design visualization. Paper presented at the
ASEE Engineering Design Graphics
Division Mid-Year Meeting, Tempe, AZ.

Norman, D. A. (1987). Some observations on
mental models. In R. M. Baecker & W. A. S.
Buxton (Eds.), Readings in human-computer
interaction: A multidisciplinary approach,
(pp. 241-244). Los Altos, CA: Morgan
Kaufmann.

Ross, W., & Aukstakalnis, S. (1993). Virtual
Reality: Implications for Research in
Engineering Design Graphics. Paper pre­
sented at the ASEE Engineering Design

Autumn • 1999

Graphics Division Mid-Year Meeting, San
Francisco, CA.

Shah, M. J. (1994). The use of a parametric
feature based CAD system to teach intro­
ductory engineering graphics. Paper pre­
sented at the ASEE Engineering Design
Graphics Division Mid-Year Meeting,
Houston, TX.

Shneiderman, B. (1998). Designing the user
interface: Strategies for effective human-
computer interaction. (3rd ed.). Reading,
MA: Addison-Wesley.

Sorby, S. A., & Baartmans, B. G. (1994). An
introduction to 3-D spatial visualization - A
pre-graphics course. Paper presented at the
6th International Conference on Engineering
Computer Graphics and Descriptive Geometry,
Tokyo, Japan.

Toogood, R. (1998). Pro/ENGINEER tutori­
al: A click-by-click primer. Shawnee-
Mission, KS: Schroff Development Corp.

Utz, J., Cox, W. R., & Steffen, D. (1997).
Inside Pro/ENGINEER. Santa Fe, NM:
On Word Press.

van der Veer, G., & Wijk, R. (1990).
Teaching a spreadsheet application - visual-
spatial metaphors in relation to spatial abil­
ity, and the effect on mental models. In P.
Gorny & M. J. Tauber (Eds.), Visualization
in human-computer interaction, (pp. 194-
208). NY: Springer-Verlag.

Wiebe, E. N. (1993). Visualization of three-
dimensional form: A discussion of theoreti­
cal models of internal representation.
Engineering Design Graphics Journal, 57,
18-28.

Wiebe, E. N. (1997). Adding agility to CAD:
Integrating product data management tools
into an organization. International Journal
of Human Factors in Manufacturing, 7, 21-
35.

Wiebe, E. N., Howe, J. E., Summey, J., &
Norton, J. J. (1997). Computing and organi­
zational assessment in the furniture indus­
try. In G. Salvendy, M. Smith, J., & R. J.
Koubek (Eds.), Design of computing sys­
tems: Social and ergonomic considerations,
(Vol. 21B, pp. 921-924). Amsterdam:
Elsevier.

Wiebe -31

